
Copyright © 2014, 2015 John L. Gustafson

AN ENERGY-EFFICIENT AND
MASSIVELY PARALLEL APPROACH
TO VALID NUMERICS

John L. Gustafson, Ph.D.
CTO, Ceranovo
Director, Massively Parallel Technologies, Etaphase,
Clustered Systems

Copyright © 2014, 2015 John L. Gustafson

Big problems facing computing
•  Too much energy and power needed per calculation
• More hardware parallelism than we know how to use
• Not enough bandwidth (the “memory wall”)
• Rounding errors more treacherous than people realize
• Rounding errors prevent use of parallel methods
• Sampling errors turn physics simulations into guesswork
• Numerical methods are hard to use, require experts
•  IEEE floats give different answers on different platforms

Copyright © 2014, 2015 John L. Gustafson

The ones vendors care most about
•  Too much energy and power needed per calculation
• More hardware parallelism than we know how to use
• Not enough bandwidth (the “memory wall”)
• Rounding errors more treacherous than people realize
• Rounding errors prevent use of parallel methods
• Sampling errors turn physics simulations into guesswork
• Numerical methods are hard to use, require experts
•  IEEE floats give different answers on different platforms

Copyright © 2014, 2015 John L. Gustafson

Too much power and heat needed
• Huge heat sinks
• 20 MW limit for exascale
• Data center electric bills
• Mobile device battery life
• Heat intensity means bulk
• Bulk increases latency
• Latency limits speed

Copyright © 2014, 2015 John L. Gustafson

More parallel hardware than we can use
• Huge clusters usually partitioned into 10s, 100s of cores
•  Few algorithms exploit millions of cores except LINPACK
• Capacity is not a substitute for capability!

Copyright © 2014, 2015 John L. Gustafson

Not enough bandwidth (“Memory wall”)

Operation Energy
consumed

Time
needed

64-bit multiply-add 200 pJ 1 nsec
Read 64 bits from cache 800 pJ 3 nsec
Move 64 bits across chip 2000 pJ 5 nsec
Execute an instruction 7500 pJ 1 nsec
Read 64 bits from DRAM 12000 pJ 70 nsec

Notice that 12000 pJ @ 3 GHz = 36 watts!

One-size-fits-all overkill 64-bit precision wastes energy, storage bandwidth

Copyright © 2014, 2015 John L. Gustafson

Happy 100th Birthday, Floating Point
1914: Torres proposes automatic computing with a fraction and a scaling factor.
2014: We still use a format designed for World War I hardware capabilities!

Copyright © 2014, 2015 John L. Gustafson

Floats designed for visible scratch work
• OK for manual calculations

•  Operator sees, remembers errors
•  Can head off overflow, underflow

• Automatic math hides all that
• No one sees processor “flags”
• Disobeys algebraic laws
• Wastes bit patterns as NaNs
•  IEEE 754 “standard” is really the

IEEE 754 guideline; optional
rules spoil consistent results

Copyright © 2014, 2015 John L. Gustafson

Analogy: Printing in 1970 vs. 2014
1970: 30 sec per page 2013: 30 sec per page

Faster technology is for better prints,
not thousands of low-quality prints per second.

Why not do the same thing with computer arithmetic?

Copyright © 2014, 2015 John L. Gustafson

This is just… sad.

Copyright © 2014, 2015 John L. Gustafson

Floats prevent use of parallelism
• No associative property for floats
•  (a + b) + (c + d) (parallel) ≠ ((a + b) + c) + d (serial)
•  Looks like a “wrong answer”
• Programmers trust serial, reject parallel
•  IEEE floats report rounding, overflow, underflow in

processor register bits that no one ever sees.

Copyright © 2014, 2015 John L. Gustafson

A New Number Format: The Unum
• Universal numbers
• Superset of IEEE types,

both 754 and 1788
•  Integers!floats!unums
• No rounding, no overflow to
∞, no underflow to zero

•  They obey algebraic laws!
• Safe to parallelize
•  Fewer bits than floats
• But… they’re new
• Some people don’t like new

“You can’t boil the ocean.”

—Former Intel exec, when shown the unum idea

Copyright © 2014, 2015 John L. Gustafson

Three ways to express a big number
Avogadro’s number: ~6.022×1023 atoms or molecules

Unum (29 bits):

0 11001101 111111100001 1 111 1011

sign exp. frac. ubit exp. size frac. size

Self-descriptive “utag” bits track
and manage uncertainty, exponent
size, and fraction size

utag

IEEE Standard Float (64 bits):
0 10001001101 1111111000010101010011110100010101111110101000010011

sign exponent (scale) fraction

Sign-Magnitude Integer (80 bits):

0 1111111100001010101001111010001010111111010100001001010011000000000000000000000

sign Lots of digits

Copyright © 2014, 2015 John L. Gustafson

Why unums use fewer bits than floats
• Exponent smaller by about 5 – 10 bits, typically
•  Trailing zeros in fraction compressed away, saves ~2 bits
• Shorter strings for more common values
• Cancellation removes bits and the need to store them

Unum (29 bits):

IEEE Standard Float (64 bits):
0 10001001101 1111111000010101010011110100010101111110101000010011

0 11001101 111111100001 1 111 1011

Copyright © 2014, 2015 John L. Gustafson

Open ranges, as well as exact points
Bit string meanings

using IEEE Float rules
Bit string meanings

in unum format

Complete representation of all real numbers using a finite number of bits

Copyright © 2014, 2015 John L. Gustafson

Ubounds are the hull of 1 or 2 unums

•  Includes closed, open, half-open intervals
•  Includes ±∞, empty set, quiet and signaling NaN
• Unlike traditional intervals, ubounds are closed
and lossless under set operations

Copyright © 2014, 2015 John L. Gustafson

The three layers of computing

Grammar
rules for exact,

inexact

High-efficiency
floats and real

intervals

Limited set of
fused

operations

Copyright © 2014, 2015 John L. Gustafson

The Warlpiri unums
Before the aboriginal Warlpiri of
Northern Australia had contact with
other civilizations, their counting
system was “One, two, many.”

Maybe they were onto something.

Copyright © 2014, 2015 John L. Gustafson

Fixed-size unums: faster than floats
• Warlpiri ubounds are one byte, but closed system for reals
• Unpacked unums pre-decode exception bits, hidden bit

Circuit required for
“IEEE half-precision
float = ∞?” Circuit required for

“unum = ∞?”
(any precision)

Copyright © 2014, 2015 John L. Gustafson

Floating Point II: The Wrath of Kahan
•  Berkeley professor William Kahan is the father of modern IEEE

Standard floats

•  Also the authority on their many dangers

•  Every idea to fix floats faces his tests that expose how new idea is
even worse

Working unum environment
completed August 13, 2013.

Can unums survive the
wrath of Kahan?

Copyright © 2014, 2015 John L. Gustafson

A Typical Kahan Challenge

•  Correct answer: (1, 1, 1, 1).
•  IEEE 32-bit: (0, 0, 0, 0) FAIL
•  IEEE 64-bit: (0, 0, 0, 0) FAIL
•  Myth: “Getting the same answer with increased precision means the

answer is correct.”
•  IEEE 128-bit: (0, 0, 0, 0) FAIL
•  Extended precision math packages: (0, 0, 0, 0) FAIL
•  Interval arithmetic: Um, somewhere between –∞ and ∞. EPIC FAIL
•  Unums, 6-bit average size: (1, 1, 1, 1) CORRECT

I have been unable to find a problem that “breaks” unum math.

Copyright © 2014, 2015 John L. Gustafson

Kahan’s “Smooth Surprise”
Find minimum of log(|3(1–x)+1|)/80 + x2 + 1 in 0.8 ≤ x ≤ 2.0

Plot, test using half a million
double-precision IEEE floats.
Shows minimum at x = 0.8.
FAIL

Plot, test using a few dozen
very low-precision unums.
Shows minimum where
x spans 4/3.
CORRECT

Copyright © 2014, 2015 John L. Gustafson

Kahan on the computation of powers

5.96046447753906250.875 = 4.76837158203125

I sent Kahan my fixed-cost, fixed-storage method, and he said it looked “impractical.”

I asked if he had a method that shows the following computation is exact:

Have not heard from him since.

Copyright © 2014, 2015 John L. Gustafson

Two can play this game, Professor K.

Unums can do anything floats can do, through explicit use of the guess function.

• Stable fixed point found by floats, not by traditional intervals
• Unums find both stable point, and unstable point at origin
•  Finding exact stable point is mathematically incorrect!
• Adding a tiny wobble sin(x)/x destroys floats, but not unums.

Copyright © 2014, 2015 John L. Gustafson

Rump’s Royal Pain

• Using IBM (pre-IEEE Standard) floats, Rump got
•  1.172603 in 32-bit precision
•  1.1726039400531 in 64-bit precision
•  1.172603940053178 in 128-bit precision

• Using IEEE double precision: 1.18059x1021

• Correct answer: –0.82739605994682136…!
Didn’t even get sign right

Compute 333.75y6 + x2(11x2y2 – y6 – 121y4 – 2) + 5.5y8 + x/(2y)
 where x = 77617, y = 33096.

Unums: Correct answer to 23 decimals using an average
of only 75 bits per number. Not even IEEE 128-bit precision

can do that. Precision, range adjust automatically.

Copyright © 2014, 2015 John L. Gustafson

Some fundamental principles
Bound the answer as tightly as possible within
the numerical environment, or admit defeat.
• No more guessing
• No more “the error is O(hn)” type estimates
•  The smaller the bound, the greater the information
• Performance is information per second
• Maximize information per bit
•  Fused operations are always explicitly distinct from their

non-fused versions and results are identical across
platforms

Copyright © 2014, 2015 John L. Gustafson

Polynomials: bane of classic intervals
Dependency and closed endpoints lose information (amber)

Unum polynomial evaluator
loses no information.

Copyright © 2014, 2015 John L. Gustafson

Polynomial evaluation solved at last
Mathematicians have sought this for at least 60 years.

“Dependency Problem” creates sloppy
range when input is an interval

Unum evaluation refines answer to
limits of the environment precision

Copyright © 2014, 2015 John L. Gustafson

Uboxes and solution sets
• A ubox is a multidimensional unum
• Exact or ULP-wide in each dimension
• Sets of uboxes constitute a solution set
• One dimension per degree of freedom in solution
• Solves the main problem with interval arithmetic
• Super-economical for bit storage
• Data parallel in general

Copyright © 2014, 2015 John L. Gustafson

Calculus considered harmful

• Computers are discrete

• Calculus is continuous

• Ensures sampling errors

• Changes problem to fit the tool

Copyright © 2014, 2015 John L. Gustafson

Deeply Unsatisfying Error Bounds

Error ≤ (b – a) h2 |f !!(ξ)| / 24

• Classical numerical texts
teach this “error bound”:

• What is f !!? Where is ξ ?
What is the bound??

• Bound is often infinite, which means no bound at all
•  “Whatever it is, it’s four times better if we make h half as

big” creates demand for supercomputing that cannot be
satisfied.

4x

Copyright © 2014, 2015 John L. Gustafson

Two “ubox methods”, both mindless
•  Paint bucket: find one solution point, test neighbors and classify as

solution or fail until no more neighbors to test
•  Works if solution is known to be a connected set
•  Requires a starting point “seed”
•  Wave front of trial uboxes can be computed in parallel

•  Try the universe: Use Warlpiri uboxes (4-bit precision) to tile all of n-

space; increment exponent and fraction size automatically
•  13n things to do in parallel (!)
•  Finds every solution, no matter what, since all of n-space is represented
•  Detects ill-posed problems and solves them anyway
•  Parallelism adjusts from 3 to trillions

Copyright © 2014, 2015 John L. Gustafson

Quarter-circle example
• Suppose all we know is x2 + y2 = 1, and x and y are ≥ 0
• Suppose we have at most 2 bits exponent, 4 bits fraction

Task:
Bound the quarter circle area.
Bound the value of π.

Copyright © 2014, 2015 John L. Gustafson

Set is connected; need a seed
• We know x = 0, y = 1 works
•  Find its eight ubox

neighbors in the plane
•  Test x2 + y2 = 1, x ≥ 0, y ≥ 0
• Solution set is green
•  Trial set is amber
•  Failure set is red
• Stop when no more trials

Copyright © 2014, 2015 John L. Gustafson

Exactly one neighbor passes
• Unum math automatically

excludes cases that floats
would accept

•  Trials are neighbors of new
solutions that
•  Are not already failures
•  Are not already solutions

• Note: no calculation of

Not part of the unit circle

y = 1− x2

Copyright © 2014, 2015 John L. Gustafson

The new trial set
•  Five trial uboxes to test
• Perfect, easy parallelism

for multicore
• Each ubox takes only

15 to 23 bits
• Ultra-fast operations
• Skip to the final result…

Copyright © 2014, 2015 John L. Gustafson

The complete quarter circle
•  The complete solution, to

this finite precision level
•  Information is reciprocal of

green area
• Use to find area under arc,

bounded above and below
• Proves value of π to an

accuracy of 3%
• No calculus needed, or

divides, or square roots

Copyright © 2014, 2015 John L. Gustafson

Compressed Final Result
• Coalesce uboxes to largest

possible ULP values
•  Lossless compression
•  Total data set: 603 bits!
•  6x faster graphics than

current methods

Instead of ULPs being the
source of error, they are the
atomic units of computation

Copyright © 2014, 2015 John L. Gustafson

Fifth-degree polynomial roots
• Analytic solution: There isn’t one.
• Numerical solution: Huge errors from rounding
• Unums: quickly return

x = –1, x = 2 as the exact
solutions. No rounding.
No underflow. Just…
the correct answer.
With as few as 4 bits
for the operands!

Copyright © 2014, 2015 John L. Gustafson

The power of open-closed endpoints

Root-finding
just works.

Copyright © 2014, 2015 John L. Gustafson

Classical Numerical Analysis
•  Time steps

•  Use position to estimate force
•  Use force to estimate acceleration
•  Update the velocity
•  Update the position
•  Lather, rinse, repeat

• Accumulates rounding
and sampling error, both unknown

• Cannot be done in parallel

start

Δt

M

Δt

Δt

Δt

Copyright © 2014, 2015 John L. Gustafson

A New Type of Parallelism
• Space steps, not time steps
• Acceleration, velocity bounded

in any given space interval
•  Find traversal time as a function

of space step (2D ubox)
• Massively parallel!
• No rounding error
• No sampling error
• Obsoletes existing

ODE methods

Copyright © 2014, 2015 John L. Gustafson

Pendulums Done Right
• Physics teaches us it’s a

harmonic oscillator with
period

•  Force-fits nonlinear ODE
into linear ODE for which
calculus works.

• WRONG answer

2π g
L

Copyright © 2014, 2015 John L. Gustafson

Physical Truth vs. Force-Fit Solution

Bends the problem to fit solution methods

Copyright © 2014, 2015 John L. Gustafson

Uboxes for linear solvers

0.74 0.75 0.76 0.77 0.78
x

0.64

0.65

0.66

0.67

0.68

0.69

0.70

y

•  If the A and b values in Ax=b
are rounded, the “lines” have
width from uncertainty

• Apply a standard solver, and
get the red dot as “the answer”,
x. A pair of floating-point
numbers.

• Check it by computing Ax and
see if it rigorously contains b.
Yes, it does.

• Hmm… are there any other
points that also work?

Copyright © 2014, 2015 John L. Gustafson

Float, Interval, and Ubox Solutions

0.7544 0.7546 0.7548 0.7550
x

0.6610

0.6612

0.6614

0.6616

0.6618
y

• Point solution (black dot) just gives
one of many solutions; disguises
answer instability

•  Interval method (gray box) yields a
bound too loose to be useful

•  The ubox set (green) is the best
you can do for a given precision

• Uboxes reveal ill-posed nature…
yet provide solution anyway

• Works equally well on nonlinear
problems!

Copyright © 2014, 2015 John L. Gustafson

Other Apps with Ubox Solutions

Imagine having provable bounds on
answers for the first time, yet with
easier programming, less storage, less
bandwidth use, less energy/power
demands, and abundant parallelism.

• Photorealistic computer
graphics

• N-body problems
• Structural analysis
•  Laplace’s equation
• Perfect gas models without

statistical mechanics

Copyright © 2014, 2015 John L. Gustafson

Revisiting the Big Challenges-1
•  Too much energy and power needed per calculation

•  Unums cut the main energy hog by about 50%

• More hardware parallelism than we know how to use
•  Uboxes reveal vast sources of data parallelism, the easiest kind

• Not enough bandwidth (the “memory wall”)
•  More use of CPU transistors, fewer bits moved to/from memory

• Rounding errors more treacherous than people realize
•  Unums eliminate rounding error, automate precision choice

• Rounding errors prevent use of multicore methods
•  Unums restore algebraic laws, eliminating the deterrent

Copyright © 2014, 2015 John L. Gustafson

Revisiting the Big Challenges-2
• Sampling errors turn physics simulations into guesswork

•  Uboxes produce provable bounds on physical behavior

• Numerical methods are hard to
use, require expertise
•  “Paint bucket” and “Try the universe” are brute force general

methods that need no expertise… not even calculus

Copyright © 2014, 2015 John L. Gustafson

The End of Error
• A complete text on unums

and uboxes is available from
CRC Press as of this month:
http://www.crcpress.com/product/isbn/
9781482239867

• Aimed at general reader;
mathematicians will hate its
casual style

• Complete prototype
environment is available as
Mathematica notebook
through publisher

 Thank you!

