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Big problems facing computing 
•  Too much energy and power needed per calculation 
• More hardware parallelism than we know how to use 
• Not enough bandwidth (the “memory wall”) 
• Rounding errors more treacherous than people realize 
• Rounding errors prevent use of parallel methods 
• Sampling errors turn physics simulations into guesswork 
• Numerical methods are hard to use, require experts 
•  IEEE floats give different answers on different platforms 
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The ones vendors care most about 
•  Too much energy and power needed per calculation 
• More hardware parallelism than we know how to use 
• Not enough bandwidth (the “memory wall”) 
• Rounding errors more treacherous than people realize 
• Rounding errors prevent use of parallel methods 
• Sampling errors turn physics simulations into guesswork 
• Numerical methods are hard to use, require experts 
•  IEEE floats give different answers on different platforms 
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Too much power and heat needed 
• Huge heat sinks 
• 20 MW limit for exascale 
• Data center electric bills 
• Mobile device battery life 
• Heat intensity means bulk 
• Bulk increases latency 
• Latency limits speed 
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More parallel hardware than we can use 
• Huge clusters usually partitioned into 10s, 100s of cores 
•  Few algorithms exploit millions of cores except LINPACK 
• Capacity is not a substitute for capability! 
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Not enough bandwidth (“Memory wall”) 

Operation Energy 
consumed 

Time 
needed 

64-bit multiply-add 200 pJ 1 nsec 
Read 64 bits from cache 800 pJ 3 nsec 
Move 64 bits across chip 2000 pJ 5 nsec 
Execute an instruction 7500 pJ 1 nsec 
Read 64 bits from DRAM 12000 pJ 70 nsec 

Notice that 12000 pJ @ 3 GHz = 36 watts! 

One-size-fits-all overkill 64-bit precision wastes energy, storage bandwidth 



Copyright © 2014, 2015 John L. Gustafson 

Happy 100th Birthday, Floating Point 
1914: Torres proposes automatic computing with a fraction and a scaling factor. 
2014: We still use a format designed for World War I hardware capabilities! 
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Floats designed for visible scratch work 
• OK for manual calculations 

•  Operator sees, remembers errors 
•  Can head off overflow, underflow 

• Automatic math hides all that 
• No one sees processor “flags” 
• Disobeys algebraic laws 
• Wastes bit patterns as NaNs 
•  IEEE 754 “standard” is really the 

IEEE 754 guideline; optional 
rules spoil consistent results 
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Analogy: Printing in 1970 vs. 2014 
1970: 30 sec per page 2013: 30 sec per page 

Faster technology is for better prints, 
not thousands of low-quality prints per second. 

Why not do the same thing with computer arithmetic? 
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This is just… sad. 
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Floats prevent use of parallelism 
• No associative property for floats 
•  (a + b) + (c + d) (parallel) ≠ ((a + b) + c) + d (serial) 
•  Looks like a “wrong answer” 
• Programmers trust serial, reject parallel 
•  IEEE floats report rounding, overflow, underflow in 

processor register bits that no one ever sees. 
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A New Number Format: The Unum 
• Universal numbers 
• Superset of IEEE types, 

both 754 and 1788 
•  Integers!floats!unums 
• No rounding, no overflow to 
∞, no underflow to zero 

•  They obey algebraic laws! 
• Safe to parallelize 
•  Fewer bits than floats 
• But… they’re new 
• Some people don’t like new 

“You can’t boil the ocean.” 

—Former Intel exec, when shown the unum idea 
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Three ways to express a big number 
Avogadro’s number: ~6.022×1023 atoms or molecules 

Unum (29 bits): 

0 11001101 111111100001 1 111 1011 

sign exp. frac. ubit exp. size frac. size 

Self-descriptive “utag” bits track 
and manage uncertainty, exponent 
size, and fraction size 

utag 

IEEE Standard Float (64 bits): 
0 10001001101 1111111000010101010011110100010101111110101000010011 

sign exponent (scale) fraction 

Sign-Magnitude Integer (80 bits): 

0 1111111100001010101001111010001010111111010100001001010011000000000000000000000 

sign Lots of digits 
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Why unums use fewer bits than floats 
• Exponent smaller by about 5 – 10 bits, typically 
•  Trailing zeros in fraction compressed away, saves ~2 bits 
• Shorter strings for more common values 
• Cancellation removes bits and the need to store them 

Unum (29 bits): 

IEEE Standard Float (64 bits): 
0 10001001101 1111111000010101010011110100010101111110101000010011 

0 11001101 111111100001   1 111 1011 
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Open ranges, as well as exact points 
Bit string meanings 

using IEEE Float rules 
Bit string meanings 

in unum format 

Complete representation of all real numbers using a finite number of bits 
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Ubounds are the hull of 1 or 2 unums 

•  Includes closed, open, half-open intervals 
•  Includes ±∞, empty set, quiet and signaling NaN 
• Unlike traditional intervals, ubounds are closed 
and lossless under set operations 
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The three layers of computing 

Grammar 
rules for exact, 

inexact 

High-efficiency 
floats and real 

intervals 

Limited set of 
fused 

operations 
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The Warlpiri unums 
Before the aboriginal Warlpiri of 
Northern Australia had contact with 
other civilizations, their counting 
system was “One, two, many.” 
 
Maybe they were onto something. 
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Fixed-size unums: faster than floats 
• Warlpiri ubounds are one byte, but closed system for reals 
• Unpacked unums pre-decode exception bits, hidden bit 

Circuit required for 
“IEEE half-precision 
float = ∞?” Circuit required for 

“unum = ∞?” 
(any precision) 
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Floating Point II: The Wrath of Kahan 
•  Berkeley professor William Kahan is the father of modern IEEE 

Standard floats 

•  Also the authority on their many dangers 

•  Every idea to fix floats faces his tests that expose how new idea is 
even worse 

Working unum environment 
completed August 13, 2013. 

Can unums survive the 
wrath of Kahan? 
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A Typical Kahan Challenge 

•  Correct answer: (1, 1, 1, 1). 
•  IEEE 32-bit: (0, 0, 0, 0) FAIL  
•  IEEE 64-bit: (0, 0, 0, 0) FAIL 
•  Myth: “Getting the same answer with increased precision means the 

answer is correct.” 
•  IEEE 128-bit: (0, 0, 0, 0) FAIL 
•  Extended precision math packages: (0, 0, 0, 0) FAIL 
•  Interval arithmetic: Um, somewhere between –∞ and ∞. EPIC FAIL 
•  Unums, 6-bit average size: (1, 1, 1, 1) CORRECT 

I have been unable to find a problem that “breaks” unum math. 
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Kahan’s “Smooth Surprise” 
Find minimum of  log(|3(1–x)+1|)/80 + x2 + 1 in 0.8 ≤ x ≤ 2.0 

Plot, test using half a million 
double-precision IEEE floats. 
Shows minimum at x = 0.8. 
FAIL 

Plot, test using a few dozen 
very low-precision unums. 
Shows minimum where 
x spans 4/3. 
CORRECT 
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Kahan on the computation of powers 

5.96046447753906250.875 = 4.76837158203125 

I sent Kahan my fixed-cost, fixed-storage method, and he said it looked “impractical.” 
 
I asked if he had a method that shows the following computation is exact: 
 
 
 
Have not heard from him since. 
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Two can play this game, Professor K. 

Unums can do anything floats can do, through explicit use of the guess function. 

• Stable fixed point found by floats, not by traditional intervals 
• Unums find both stable point, and unstable point at origin 
•  Finding exact stable point is mathematically incorrect! 
• Adding a tiny wobble sin(x)/x destroys floats, but not unums. 
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Rump’s Royal Pain 

• Using IBM (pre-IEEE Standard) floats, Rump got 
•  1.172603 in 32-bit precision 
•  1.1726039400531 in 64-bit precision 
•  1.172603940053178 in 128-bit precision 

• Using IEEE double precision: 1.18059x1021 

• Correct answer: –0.82739605994682136…! 
Didn’t even get sign right 

Compute 333.75y6 + x2(11x2y2 – y6 – 121y4 – 2) + 5.5y8 + x/(2y) 
    where x = 77617, y = 33096.  

Unums: Correct answer to 23 decimals using an average 
of only 75 bits per number. Not even IEEE 128-bit precision 

can do that. Precision, range adjust automatically. 
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Some fundamental principles 
Bound the answer as tightly as possible within 
the numerical environment, or admit defeat. 
• No more guessing 
• No more “the error is O(hn)” type estimates 
•  The smaller the bound, the greater the information 
• Performance is information per second 
• Maximize information per bit 
•  Fused operations are always explicitly distinct from their 

non-fused versions and results are identical across 
platforms  
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Polynomials: bane of classic intervals 
Dependency and closed endpoints lose information (amber) 

Unum polynomial evaluator 
loses no information. 



Copyright © 2014, 2015 John L. Gustafson 

Polynomial evaluation solved at last 
Mathematicians have sought this for at least 60 years. 

“Dependency Problem” creates sloppy 
range when input is an interval 

Unum evaluation refines answer to 
limits of the environment precision 
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Uboxes and solution sets 
• A ubox is a multidimensional unum 
• Exact or ULP-wide in each dimension 
• Sets of uboxes constitute a solution set 
• One dimension per degree of freedom in solution 
• Solves the main problem with interval arithmetic 
• Super-economical for bit storage 
• Data parallel in general 
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Calculus considered harmful 

• Computers are discrete 

• Calculus is continuous 

• Ensures sampling errors 

• Changes problem to fit the tool 
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Deeply Unsatisfying Error Bounds 

Error ≤ (b – a) h2 |f !!(ξ)| / 24 

• Classical numerical texts 
teach this “error bound”: 

• What is f !!? Where is ξ ? 
What is the bound?? 

• Bound is often infinite, which means no bound at all 
•  “Whatever it is, it’s four times better if we make h half as 

big” creates demand for supercomputing that cannot be 
satisfied. 

4x 
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Two “ubox methods”, both mindless 
•  Paint bucket: find one solution point, test neighbors and classify as 

solution or fail until no more neighbors to test 
•  Works if solution is known to be a connected set 
•  Requires a starting point “seed” 
•  Wave front of trial uboxes can be computed in parallel 

 
•  Try the universe: Use Warlpiri uboxes (4-bit precision) to tile all of n-

space; increment exponent and fraction size automatically 
•  13n things to do in parallel (!) 
•  Finds every solution, no matter what, since all of n-space is represented 
•  Detects ill-posed problems and solves them anyway 
•  Parallelism adjusts from 3 to trillions 
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Quarter-circle example 
• Suppose all we know is x2 + y2 = 1, and x and y are ≥ 0 
• Suppose we have at most 2 bits exponent, 4 bits fraction 

Task: 
Bound the quarter circle area. 
Bound the value of π.
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Set is connected; need a seed 
• We know x = 0, y = 1 works 
•  Find its eight ubox 

neighbors in the plane 
•  Test x2 + y2 = 1, x ≥ 0, y ≥ 0 
• Solution set is green 
•  Trial set is amber 
•  Failure set is red 
• Stop when no more trials 
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Exactly one neighbor passes 
• Unum math automatically 

excludes cases that floats 
would accept 

•  Trials are neighbors of new 
solutions that 
•  Are not already failures 
•  Are not already solutions 

• Note: no calculation of 

Not part of the unit circle 

y = 1− x2
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The new trial set 
•  Five trial uboxes to test 
• Perfect, easy parallelism 

for multicore 
• Each ubox takes only 

15 to 23 bits 
• Ultra-fast operations 
• Skip to the final result… 
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The complete quarter circle 
•  The complete solution, to 

this finite precision level 
•  Information is reciprocal of 

green area 
• Use to find area under arc, 

bounded above and below 
• Proves value of π to an 

accuracy of 3% 
• No calculus needed, or 

divides, or square roots 
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Compressed Final Result 
• Coalesce uboxes to largest 

possible ULP values 
•  Lossless compression 
•  Total data set: 603 bits! 
•  6x faster graphics than 

current methods 

Instead of ULPs being the 
source of error, they are the 
atomic units of computation 
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Fifth-degree polynomial roots 
• Analytic solution: There isn’t one. 
• Numerical solution: Huge errors from rounding 
• Unums: quickly return 

x = –1, x = 2 as the exact 
solutions. No rounding. 
No underflow. Just… 
the correct answer. 
With as few as 4 bits 
for the operands! 
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The power of open-closed endpoints 

Root-finding 
just works. 
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Classical Numerical Analysis 
•  Time steps 

•  Use position to estimate force 
•  Use force to estimate acceleration 
•  Update the velocity 
•  Update the position 
•  Lather, rinse, repeat 

• Accumulates rounding 
and sampling error, both unknown 

• Cannot be done in parallel 

start 

Δt 

M 

Δt 

Δt 

Δt 
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A New Type of Parallelism 
• Space steps, not time steps 
• Acceleration, velocity bounded 

in any given space interval 
•  Find traversal time as a function 

of space step (2D ubox) 
• Massively parallel! 
• No rounding error 
• No sampling error 
• Obsoletes existing 

ODE methods 
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Pendulums Done Right 
• Physics teaches us it’s a 

harmonic oscillator with 
period 
 
 

•  Force-fits nonlinear ODE 
into linear ODE for which 
calculus works. 

• WRONG answer 

2π g
L
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Physical Truth vs. Force-Fit Solution 

Bends the problem to fit solution methods 
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Uboxes for linear solvers 

0.74 0.75 0.76 0.77 0.78
x

0.64

0.65

0.66

0.67

0.68

0.69

0.70

y

•  If the A and b values in Ax=b 
are rounded, the “lines” have 
width from uncertainty 

• Apply a standard solver, and 
get the red dot as “the answer”, 
x. A pair of floating-point 
numbers. 

• Check it by computing Ax and 
see if it rigorously contains b. 
Yes, it does. 

• Hmm… are there any other 
points that also work? 
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Float, Interval, and Ubox Solutions 

0.7544 0.7546 0.7548 0.7550
x

0.6610

0.6612

0.6614

0.6616

0.6618
y

• Point solution (black dot) just gives 
one of many solutions; disguises 
answer instability 

•  Interval method (gray box) yields a 
bound too loose to be useful 

•  The ubox set (green) is the best 
you can do for a given precision 

• Uboxes reveal ill-posed nature… 
yet provide solution anyway 

• Works equally well on nonlinear 
problems! 
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Other Apps with Ubox Solutions 

Imagine having provable bounds on 
answers for the first time, yet with 
easier programming, less storage, less 
bandwidth use, less energy/power 
demands, and abundant parallelism. 

• Photorealistic computer 
graphics 

• N-body problems 
• Structural analysis 
•  Laplace’s equation 
• Perfect gas models without 

statistical mechanics 
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Revisiting the Big Challenges-1 
•  Too much energy and power needed per calculation 

•  Unums cut the main energy hog by about 50% 

• More hardware parallelism than we know how to use 
•  Uboxes reveal vast sources of data parallelism, the easiest kind 

• Not enough bandwidth (the “memory wall”) 
•  More use of CPU transistors, fewer bits moved to/from memory 

• Rounding errors more treacherous than people realize 
•  Unums eliminate rounding error, automate precision choice 

• Rounding errors prevent use of multicore methods 
•  Unums restore algebraic laws, eliminating the deterrent 
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Revisiting the Big Challenges-2 
• Sampling errors turn physics simulations into guesswork 

•  Uboxes produce provable bounds on physical behavior 

• Numerical methods are hard to 
use, require expertise 
•  “Paint bucket” and “Try the universe” are brute force general 

methods that need no expertise… not even calculus 
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The End of Error 
• A complete text on unums 

and uboxes is available from 
CRC Press as of this month: 
http://www.crcpress.com/product/isbn/
9781482239867 

• Aimed at general reader; 
mathematicians will hate its 
casual style 

• Complete prototype 
environment is available as 
Mathematica notebook 
through publisher 

             Thank you! 




