
This project and the research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement n° 288777.

http://www.montblanc-project.eu

The Mont-Blanc approach
towards Exascale

Alex Ramirez
Barcelona Supercomputing Center

Disclaimer: I only speak for myself, not for the individual members of the consortium. All references to unavailable products
are speculative, taken from web sources. There is no commitment from ARM, Samsung, TI, Bull, or others, implied.

Outline

• A bit of history
• Vector supercomputers
• Commodity supercomputers
• The next step in the commodity chain

• Supercomputers from mobile components
• Killer mobile examples
• Mont-Blanc architecture strawman
• Rely on OmpSs to handle the challenges

• BSC prototype roadmap
• Mont-Blanc project goals and milestones

In the beginning ... there were only supercomputers

• Built to order
• Very few of them

• Special purpose hardware
• Very expensive

• Control Data, Convex, ...
• Cray-1

• 1975, 160 MFLOPS
• 80 units, 5-8 M$

• Cray X-MP
• 1982, 800 MFLOPS

• Cray-2
• 1985, 1.9 GFLOPS

• Cray Y-MP
• 1988, 2.6 GFLOPS

• Fortran+vectorizing compilers

The Killer Microprocessors

• Microprocessors killed the Vector supercomputers
• They were not faster ...
• ... but they were significantly cheaper and greener

• Need 10 micros to achieve the performance of 1 vector CPU
• SIMD vs. MIMD programming paradigms

Cray-1, Cray-C90
NEC SX4, SX5

Alpha AV4, EV5
Intel Pentium
IBM P2SC
HP PA8200

1974 1979 1984 1989 1994 1999
10

100

1000

10.000

M
FL

O
P

S

Then, commodity took over special purpose

• ASCI Red, Sandia
• 1997, 1 Tflops (Linpack),
• 9298 cores @ 200 Mhz
• 1.2 Tbytes
• Intel Pentium Pro

• Upgraded to Pentium II Xeon,
1999, 3.1 Tflops

• ASCI White, LLNL
• 2001, 7.3 TFLOPS
• 8192 proc. @ 375 Mhz,
• 6 Tbytes
• (3+3) Mwats
• IBM Power 3

Message-Passing Programming Models

Finally, commodity hardware + commodity software

• MareNostrum
• Nov 2004, #4 Top500

• 20 Tflops, Linpack
• IBM PowerPC 970 FX

• Blade enclosure
• Myrinet + 1 GbE network
• SuSe Linux

The next step in the commodity chain

• Total cores in Jun'12 Top500
• 13.5 Mcores

• Tablets sold in Q4 2011
• 27 Mtablets

• Smartphones sold Q4 2011
• > 100 Mphones

HPC

Servers

Desktop

Mobile

ARM Processor improvements in DP FLOPS

• IBM BG/Q and Intel AVX implement DP in 256-bit SIMD
• 8 DP ops / cycle

• ARM quickly moved from optional floating-point to state-of-the-art
• ARMv8 ISA introduces DP in the NEON instruction set (128-bit SIMD)

D
P

op
s/

cy
cl

e

1

2

4

8

16

2015

ARM
CortexTM-A9

ARM
CortexTM-A15

ARMv8
IBM

BG/Q
Intel
AVX

IBM
BG/P

20132011200920072005200320011999

Intel
SSE2

Integrated ARM GPU performance

2012 2013 2014

Mali-T604
First Midgard architecture product
Scalable to 4 cores
68 GFLOPS*

Mali-T658
High-end solution + compute capability
Scalable to 8 cores, ARMv8 compatible
272 GFLOPS*

Skrymir

P
er

fo
rm

an
ce

* Data from web sources, not an ARM commitment

Are the “Killer Mobiles™" coming?

• Where is the sweet spot? Maybe in the low-end ...
• Today ~ 1:8 ratio in performance, 1:100 ratio in cost
• Tomorrow ~ 1:2 ratio in performance, still 1:100 in cost ?

• The same reason why microprocessors killed supercomputers
• Not so much performance ... but much lower cost, and power

Performance (log2)

C
os

t (
lo

g 1
0)

Mobile ($20)

Desktop ($150)

Server ($1500)

Nowadays
Near future

HPC-Mobile ($40) ?

1111

Killer mobile™ example: Samsung Exynos 5450 *

• 4-core ARM Cortex-A15 @ 2 GHz
• 16 GFLOPS

• 8-core ARM Mali T685
• 272 GFLOPS*

• Dual channel DDR3 memory controller

• All in a low-power mobile socket
* Data from web sources, not an ARM or Samsung commitment

Killer mobile™ example: TI KeyStone II *

• 4-core Cortex-A15 @ 2 GHz
• 16 GFLOPS

• 8-core C66x DSP
• 160 SP GFLOPS
• 60 DP GFLOPS

• Dual channel DDR3 + ECC
• High speed I/O interfaces
• 4-port Gigabit Ethernet switch

• All in a 10-15W socket*

* Data from web sources, not an ARM or TI commitment

Integrated CPU + GPU

• BSC has low-power prototypes for other architectures …
• Homogeneous multicore

• Tibidabo: Tegra2 cluster (2x ARM Cortex-A9)
• Heterogeneous multicore + discrete accelerator

• Pedraforca: Tegra3 + CUDA GPU (4x Cortex A9 + Quadro 1000M)

• If we want to be better, we must be different

• Integrated GPU has many advantages
• Shared memory with CPU

• Even cache coherent!
• No power wasted on PCIe bus
• No power wasted on GDDR5 memory
• Higher energy efficiency + lower cost

Are we building BlueGene again?

• Yes ...
• Exploit Pollack's Rule in

presence of abundant
parallelism

• Many small cores vs. Single
fast core

• ... and No
• Heterogeneous computing

• On-chip GPU, DSP
• Commodity vs. Special

purpose
• Higher volume
• Many vendors
• Lower cost

• Lots of room for improvement
• No SIMD / vectors yet ...

• Build on Europe's embedded
strengths

High density packaging architecture

• Standard BullX blade
enclosure

• Multiple compute nodes per
blade
• Additional level of

interconnect, on-blade
network

SSD

NIC

SSD

NIC

SSD

NIC

SSD

NIC

SSD

NIC

SSD

NIC

SSD

NIC

SSD

NIC

* Strawman design concept, not the actual Bull implementation

X86 + Nvidia cluster, Minotauro @ BSC, 1266 MFLOPS / Watt

There is no free lunch

2X more cores for
the same

performance

8X more address
spaces

½ on-chip memory /
core

1 GbE inter-chip
communication

Rely on software to handle the challenges

• Programming model and runtime are key components to
address the challenges
• Programming Model: provide mechanisms to

• Let programmer focus on science, algorithms
• Provide hints to runtime

• Runtime: map to resources
• Most information available on application demands and system

state/characteristics
• Need to put intelligence in it, need to rely on it

• Maybe macho programmers can get high performance
today...
• ... but what about the rest? At what cost? How portable?

Simple Program Annotations

OmpSs: Generate task graph at run time
#pragma omp task in(A, B) out(C)
void vadd3 (float A[BS], float B[BS],

float C[BS]);
#pragma omp task in(sum, A) out(B)
void scale_add (float sum, float A[BS],

float B[BS]);
#pragma omp task in(A) inout(sum)
void accum (float A[BS], float *sum);

for (i=0; i<N; i+=BS) // C=A+B
vadd3 (&A[i], &B[i], &C[i]);

...
for (i=0; i<N; i+=BS) // sum(C[i])

accum (&C[i], &sum);
...
for (i=0; i<N; i+=BS) // B=sum*E

scale_add (sum, &E[i], &B[i]);
...
for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);
...
for (i=0; i<N; i+=BS) // E=C+F

vadd3 (&C[i], &F[i], &E[i]);

1 2 3 4

13 14 15 16

5 6 87

17

9

18

10

19

11

20

12

Task Graph Generation

#pragma omp task in(A, B) out(C)
void vadd3 (float A[BS], float B[BS],

float C[BS]);
#pragma omp task in(sum, A) out(B)
void scale_add (float sum, float A[BS],

float B[BS]);
#pragma omp task in(A) inout(sum)
void accum (float A[BS], float *sum);

OmpSs: Dynamically map tasks to resources

1 1 1 2

2 2 2 3

2 3 54

7

6

8

6

7

6

8

7

for (i=0; i<N; i+=BS) // C=A+B
vadd3 (&A[i], &B[i], &C[i]);

...
for (i=0; i<N; i+=BS) // sum(C[i])

accum (&C[i], &sum);
...
for (i=0; i<N; i+=BS) // B=sum*E

scale_add (sum, &E[i], &B[i]);
...
for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);
...
for (i=0; i<N; i+=BS) // E=C+F

vadd3 (&C[i], &F[i], &E[i]);

Task Graph Execution
(not necessarily in program order)

OmpSs & Challenges: 2x more cores

• Flexibility to dynamically
generate work and traverse
the computation space
• Asynchronous data flow

• Overlap
• Tolerate variability

• Non structured parallelism
• Look-ahead

• Huge task window
• Do not stall at dependences
• See what will have to be

executed far in advance
• Nesting

• Top down
• All levels contribute
• Parallelize overheads

1 1 1 2

2 2 2 3

2 3 54

7

6

8

6

7

6

8

7

OmpSs & Challenges: ½ on chip memory

• Potential to automatically
implement
• Prefetch
• Reuse

• Runtime responsibilities
• Replication management,

coherence + consistency
• Example techniques

• Minimize reuse distance
• Lazy write-back
• Data bypassing

P. Bellens, et al, CellSs: Scheduling Techniques to Better
Exploit Memory Hierarchy. Sci. Prog. 2009

P. Bellens, J.M. Pérez, R.M. Badia, J. Labarta: Making the Best of
Temporal Locality: Just-in-Time Renaming and Lazy Write-
Back on the Cell/B.E. IJHPCA 25(2): 137-147 (2011)

OmpSs & Challenges: 8x address spaces

• OmpSs @ Cluster
• Handles replication and

copies
• Handle coherency and

consistency

• Optimize for locality and
reuse

• A single “shared memory”
node
• Built of several separated

address spaces
• Built from heterogeneous

nodes
• CPU + GPU

J. Bueno, A. Duran, R.M. Badia, X. Martorell, E. Ayguade, J. Labarta.
Productive Programming of GPU Clusters with OmpSs. IPDPS'12.

OmpSs & Challenges: Slow interconnect

• Hybrid MPI + OmpSs:
• Encapsulate MPI messaging into asynchronous tasks

• Propagate asynchronous behavior to MPI level
• Overlap communication with computation
• Hide long network latency and low bandwidth

V. Marjanovic, J. Labarta, E. Ayguadé, M. Valero: Overlapping communication and
computation by using a hybrid MPI/SMPSs approach. ICS 2010: 5-16

No overlap Overlap

C++ Fortran CUDA OpenCLC

GPUCPU
GPUCPU

gcc gfortran nvcc …

OmpSs runtime layer manages architecture complexity

• Programmer exposed a simple
architecture

• Task graph provides
lookahead
• Exploit knowledge about the

future
• Automatically handle all of the

architecture challenges
• Strong scalability
• Multiple address spaces
• Low cache size
• Low interconnect bandwidth

• Enjoy the positive aspects
• Energy efficiency
• Low cost

OmpSs source2source compiler (Mercurium)

OmpSs runtime library (NANOS++)

CUDA OpenCL

Linux

CPU GPU …

Intermediate files (C, C++, …)

Native compiler(s)

Executable(s)

MPI
GASNet

Annotated source files (#pragma)

LinuxLinux

Used in projects and applications …

• Undertaken significant efforts to port real
large scale applications:
•

• Scalapack, PLASMA, SPECFEM3D, LBC,
CPMD PSC, PEPC, LS1 Mardyn, Asynchronous
algorithms, Microbenchmarks

•
• YALES2, EUTERPE, SPECFEM3D, MP2C,

BigDFT, QuantumESPRESSO, PEPC, SMMP,
ProFASI, COSMO, BQCD

• DEEP
• NEURON, iPIC3D, ECHAM/MESSy, AVBP,

TurboRVB, Seismic
• G8_ECS

• CGPOP, NICAM (planed) …
• Consolider project (Spanish ministry)

• MRGENESIS
• BSC initiatives and collaborations:

• GROMACS, GADGET, WRF,…

• Plagiarism detection
• Histograms, sorting, …

(FhI FIRST)

• Trace browsing
• Paraver (BSC)

• Clustering algorithms
• G-means (BSC)

• Image processing
• Tracking (USAF)

• Embedded and consumer
• H.264 (TUBerlin), …

… but NOT only for «scientific computing» …

A big challenge, and a huge opportunity for Europe

• Prototypes are critical to accelerate software development
• System software stack + applications

2011 2012 2013 2014 2015 2016 2017

256 nodes
250 GFLOPS

1.7 Kwatt

Built with the best
of the market

Built with the best
that is coming

What is the best
that we could do?

G
FL

O
P

S
 /

W

Very high expectations ...

• High media impact of ARM-based HPC
• Scientific, HPC, general press quote Mont-

Blanc objectives
• Highlighted by Eric Schmidt, Google Executive

Chairman, at the EC's Innovation Convention

The hype curve

• We'll see how deep it gets on the way down ...

Vi
si

bi
lit

y

Time

Technology Trigger

Peak of Inflated Expectations

Trough of Disillusionment

Slope of Enlightenment

Plateau of Productivity

Project goals

• To develop an European Exascale approach
• Based on embedded power-efficient technology

• Objetives
• Develop a first prototype system, limited by available technology
• Design a Next Generation system, to overcome the limitations
• Develop a set of Exascale applications targeting the new system

Conclusions

• Mont-Blanc architecture is shaping up
• ARM multicore + integrated accelerator
• Ethernet NIC
• High density packaging

• OmpSs programming model to handle hardware
challenges

• Many important decisions still pending
• Contacting providers
• Comparing alternatives

• Stay tuned!
MontBlancEU

@MontBlanc_EU

www.montblanc-project.eu

