
Intel Corporation 1

An Overview of GEO

December 9, 2015

Project Lead: Jonathan Eastep, PhD & Principal Engineer
jonathan.m.eastep@intel.com

(Global Energy Optimization)

mailto:jonathan.m.eastep@intel.com

Intel Corporation 2

GEO Project Scope and Goals

 GEO is an open source, scalable, extensible runtime and
framework for power management in HPC systems

 Provides extensibility via plug-ins + advanced default functionality

 Developing GEO through CORAL NRE project with
potential deployment on Aurora system at Argonne

 Goal1: unlock more performance in power-limited systems

 Goal2: accelerate innovation in HPC power management

 Enables researchers to focus effort on algorithms (via plug-ins) not
re-engineering distributed runtime infrastructure

 Provides a streamlined path for deploying new ideas

 Product-grade framework w/ development+hardening backed by Intel

 Drives codesign of power and performance management features in
Intel processors for better results w/ runtimes like GEO

Intel Corporation 3
3

Acknowledgements

GEO Core Team (Intel)

 Fede Ardanaz

 Chris Cantalupo

 Jonathan Eastep

 Richard Greco

 Stephanie Labasan

 Steve Sylvester

 Reza Zamani

 … and hiring!

Collaborators (Intel)

 David Lombard

 Tryggve Fossum

 Al Gara

Collaborators (External)

 Argonne (CORAL)

 LLNL (Rountree)

 … and expanding!

Intel Corporation 4

Relationship to Standard Power APIs

 GEO is a job-level power management framework

 Manages the compute nodes in a job to a job power bound

 … while maximizing performance or other objective functions

 With work, GEO could fit under/above other power APIs

 GEO currently interacts with other SW components through its
own interfaces (next slide)

 We’re not positioning our external interfaces as standards

 Emphasis on providing an extensible framework and
advanced out-of-the-box power management strategies

 Builds on “Auto-Tuner” machine learning, control system, and
optimization technology Intel has been researching for 4 years

Intel Corporation 5

Resource Manager
3rd parties

Job Power Manager =

GEO

Intel GEO team

User Interface
(Work w/ RMs &

Schedulers)

PCU RAPL and Perf
Counter Interfaces
(Work w/ Intel GEO team to

enhance)

Scheduler =
Power-Aware Scheduler
(Work w/ Intel team to implement)

Job Power Manager Interface
(Work w/ RMs & Schedulers)

Application
Interface

Intel PM Arch team

Owner

Admin Interface
(Work w/ RMs &

Schedulers)

GEO Interfaces / Integration Architecture

Intel Corporation 6

 Comprehend and mitigate dynamic load imbalance by globally
coordinating frequency and power allocations across nodes

 Leverage application-awareness and learning to recognize
patterns in application (phases), then exploit patterns to
optimize decisions

 React to phase changes at aggressive time scales (low
milliseconds) and rapidly redistribute limited power to
performance-critical resources

 Tackle the scale challenges prior techniques have swept under
the rug to enable holistic joint optimization of power policy
across the job

PRIOR GOVERNMENT RIGHTS – Rights as provided under contract B609815

Advanced Auto-Tuner Capabilities

Intel Corporation 7
7

Auto-Tuner Prototype Results Summary

Speedup derives from two factors: correcting load imbalance across nodes and node-local spatio-
temporal energy scheduling optimizations exploiting phases

Bars represent average results over a range of assumptions about how much power the job is
allocated and how much load imbalance is present

Experimental setup carefully emulates large-cluster load imbalance on a small cluster

Results collected while running on Xeon hardware (not simulation)

1.18x
1.31x

1.17x 1.22x

0

0.5

1

miniFE FFT IS NEKbone

Speedup from Auto-Tuner at ISO Power

No Auto-Tuner Auto-Tuner

Intel Corporation 8

Presentation Outline

GEO Project Overview

GEO Architecture Overview

Open Source Project Details (if time allows)

Deep Dive: Application Feedback Interface

Intel Corporation 9

GEO Architecture Overview

Intel Corporation 10
10

GEO Hierarchical Architecture

Scaling challenge is addressed via tree-
hierarchical design & hierarchical policy

 Each agent owns sub-problem: decide how
to divide/balance power among children

 Power/perf telemetry is scalably
aggregated so network traffic is minimal

 Tuning is globally optimized despite
distributed tuning: achieved through
Hierarchical-POMDP learning techniques

GEO tree runs in 1 reserved core per CN

 Leaf & non-leaf agents run in these cores

 Enables fast reaction times, deep analysis

 Overhead is negligible in manycore chips

 Designing for minimal memory footprint

CN ≡ Compute Node
(in compute node racks)

GEO manages job to a power budget and globally
coordinates frequency & power allocation decisions Root

Agent
……

…

Leaf
Agent

…

CN

Job

In-band MPI
based comm

Intel Corporation 11
11

Zoom-In on Leaf Agent

GEO

Learning

App APIs

Process 0 Process i

…

Phase
Perf

Policy
App APIs

Phase
Perf

Policy

Processor

PowerEnergy
Meters

Power budgeting inside the processor:
 Spatio-Temporal Energy Scheduling

(phase-adaptively allocate power
among RAPL power domains)

Event
Counters

Root
Agent

……
…

Leaf
Agent

…
CN

optional

Policy

Node
power
budget

Intel Corporation 12

Open Source Project Details

Intel Corporation 13

Team just completed first open source release on github

 Package Name: geopm (GEO power management)

 Release Goal: publish docs and interfaces for community review

 Non-Goal: feature-completeness

 Compatibility: Red Hat RHEL7 and SUSE SLES12 Linux distros

 Repository: view project and source code via
http://geopm.github.io/geopm/

PRIOR GOVERNMENT RIGHTS – Rights as provided under contract B609815

GEOPM Open Source Release

http://geopm.github.io/geopm/

Intel Corporation 14

PRIOR GOVERNMENT RIGHTS – Rights as provided under contract B609815

Release Notes

 Defined interfaces and architecture for integration in HPC SW stacks

 Nailed down our modular object-oriented design in C++11 (with C
interfaces to external components / application)

 Developed solid autotools build system and gtest/gcov test
infrastructure

 Delivered support for basic static power management functionality

 E.g. Uniform Frequency Static mode

 E.g. Hybrid Frequency Static mode (Pseudo Big Core / Little Core)

 No dynamic power management yet (still under construction)

 No Auto-Tuner load balancing modes yet

Intel Corporation 15

 WIP on community adoption of GEO
 [DONE] Spin up collaborations with Argonne and LLNL

 [WIP] Spin up collaborations with other national labs and universities

 [WIP] Pursue community feedback on interfaces and documentation

 [WIP] Joint research / publications with collaborators building on GEO

 WIP on the runtime for dynamic power management
 [DONE] MPI communications between levels of GEO runtime hierarchy

 [DONE] SLURM plug-in (initial development vehicle)

 [DONE] Application feedback interface implementation

 Recall: application markup is initially required for dynamic power mgmt modes

 Long-term goal is for GEO to automatically infer the info without the API

 [DONE] Extensibility in support for processor features

 [WIP] Extensibility in decision algorithms

Next Steps (Through Q1’16)

Intel Corporation 16

Deep Dive: Application Feedback
Interface

AOL

β

Input Output

Intel Corporation 17

Overview

 C interfaces provided in a lib that the app links against

 They resemble typical profiler interfaces

 Consist of annotation functions for programmers to
provide GEO info about app critical path and phases:

 Indicate where bulk synchronizations occur (points where load
imbalance results will result in degraded performance)

 Indicate where phase changes occur in an MPI rank (i.e. phase
entry and exit)

 Indicate hints specifying whether phases will be compute-,
memory-, or communication-intensive

 Indicate how much progress each MPI rank has made toward
completing the current phase (identify critical path)

Intel Corporation 18

Profiler Management / Reporting

int geopm_prof_create(

const char *name,

size_t table_size,

const char *sample_key,

MPI_Comm comm,

struct geopm_prof_c **prof);

int geopm_prof_destroy(

struct geopm_prof_c *prof);

int geopm_prof_region(

struct geopm_prof_c *prof,

const char *region_name,

long policy_hint,

uint64_t *region_id);

int geopm_prof_print(

struct geopm_prof_c *prof,

const char *file_name,

int depth);

Intel Corporation 19

Phase Markup / Bulk Sync Point

int geopm_prof_enter(

struct geopm_prof_c *prof,

uint64_t region_id);

int geopm_prof_exit(

struct geopm_prof_c *prof,

uint64_t region_id);

int geopm_prof_outer_sync(

struct geopm_prof_c *prof,

uint64_t region_id);

Intel Corporation 20

Progress Reporting (1)

 Interfaces provide two options for reporting progress:

 Special case (direct determination of critical path):

– Assume: MPI+OpenMP w/ statically scheduled parallel
regions

– Assume: Total work for each individual thread is known

– API computes rank’s progress as the min progress any thread
made toward completing its total work (this is a %)

 General case (estimation of critical path):

– Assume: MPI+X

– Assume: Total work is not known for each individual thread
but the total work across all threads is known

– API computes rank’s progress as sum of work completed on
all threads / total work all threads will perform (this is a %)

Intel Corporation 21

Progress Reporting (2)

int geopm_prof_progress(

struct geopm_prof_c *prof,

uint64_t region_id,

double fraction);

int geopm_omp_sched_static_norm(

int num_iter,

int chunk_size,

int num_thread,

double *norm);

double geopm_progress_threaded_min(

int num_thread,

size_t stride,

const uint32_t *progress,

const double *norm);

double geopm_progress_threaded_sum(

int num_thread,

size_t stride,

const uint32_t *progress,

double norm);

Intel Corporation 22

Example of Application Markup (1)

max_threads = omp_get_max_threads();

posix_memalign((void **)&progress, cache_line_size,

cache_line_size * max_threads);

memset(progress, 0, cache_line_size * max_threads);

norm = (double *)malloc(sizeof(double) * max_threads);

geopm_omp_sched_static_norm(num_iter, chunk_size,

max_threads, norm);

geopm_prof_region(prof, "main-loop",

GEOPM_POLICY_HINT_UNKNOWN, ®ion_id);

#pragma omp parallel default(shared) private(i, progress_ptr)

{

progress_ptr = progress + stride * omp_get_thread_num();

#pragma omp for schedule(static, chunk_size)

for (i = 0; i < num_iter; ++i) {

x += do_something(i);

(*progress_ptr)++;

if (omp_get_thread_num() == 0) {

thread_progress = geopm_progress_threaded_min(

omp_get_num_threads(), stride, progress, norm);

geopm_prof_progress(prof, region_id, thread_progress);

}

}

}

Intel Corporation 23

Example of Application Markup (2)

max_threads = omp_get_max_threads();

posix_memalign((void **)&progress, cache_line_size,

cache_line_size * max_threads);

memset(progress, 0, cache_line_size * max_threads);

norm = 1.0 / num_iter;

geopm_prof_region(prof, "main-loop",

GEOPM_POLICY_HINT_UNKNOWN, ®ion_id);

#pragma omp parallel default(shared) private(i, progress_ptr)

{

progress_ptr = progress + stride * omp_get_thread_num();

#pragma omp for schedule(static, chunk_size)

for (i = 0; i < num_iter; ++i) {

x += do_something(i);

(*progress_ptr)++;

if (omp_get_thread_num() == 0) {

thread_progress = geopm_progress_threaded_sum(

omp_get_num_threads(), stride, progress, norm);

geopm_prof_progress(prof, region_id, thread_progress);

}

}

}

Intel Corporation 24

PRIOR GOVERNMENT RIGHTS – Rights as provided under contract B609815

Coming Soon: Plug-In Interfaces

 Completion targeted for Q1’16 (hopefully early Q1)

 Platform plug-ins

 Provides high-level abstraction of low-level processor interfaces
for power & performance monitoring and control

 E.g. control registers for RAPL, P-states, event counters, etc.

 Simplifies porting to new Intel processors with new features (or
processors from other vendors)

 Decider plug-ins

 Enables researchers to extend GEO’s control algorithms

 E.g. site-specific power management strategies

 E.g. application-specific power management strategies

Intel Corporation 26

Backup Slides

Intel Corporation 27
27

Power Bounds

 Current strategies for managing power aggravate load imbalance

 Uniform node power caps expose frequency variation from manufacturing variation

 Uncoordinated Turbo/throttle decisions on nodes expose frequency variation

 Results are far from optimal

 Load imbalance is a big challenge

 Apps tend to do bulk synchronizations

 Performance is determined by last node
to arrive at bulk synchronization point

 Power is becoming a scarce resource
that must be managed carefully

 Future systems are expected to be
power-limited due to site limits

 Processors are power-limited due to
thermal design power limits

Intel Corporation 28
28

Comparison Against Theoretical Bounds

 Summary
 We achieved near-ideal benefits for most workloads with negligible losses vs. bounds
 But, we note non-negligible losses of benefit for Integer Sort

 X-axis is a parameter for how much load imbalance we inject into the system
 Root-cause of benefit losses: some is initial search time, most is control error due to noise
 IS is considerably noisier than FFT and miniFE; working to improve handling of noise more

9
6

.2
%

9
9

.1
%

9
8

.2
%

9
7

.8
%

9
6

.4
%

0
0.2
0.4
0.6
0.8

1
1.2

0% 10% 20% 30% 40%

Ef
fi

ci
e

n
cy

% Delay

Example of IS Losses w/ 90W Budget Config

Intel Corporation 29
29

GEO Advanced Power Balancing Modes

Can configure objective function for how
GEO will dynamically mitigate imbalance
 a) Equalize processor frequency
 b) Equalize node’s app progress

(steer power to critical path)

Root
Agent

……
…

Leaf
Agent

…

CN

