inte) An Overview of GEO
(Global Energy Optimization)

Project Lead: Jonathan Eastep, PhD & Principal Engineer
jonathan.m.eastep@intel.com

December 9, 2015

Intel Corporation

mailto:jonathan.m.eastep@intel.com

GEO Project Scope and Goals

GEO is an open source, scalable, extensible runtime and
framework for power management in HPC systems

* Provides extensibility via plug-ins + advanced default functionality

Developing GEO through CORAL NRE project with
potential deployment on Aurora system at Argonne

Goal1: unlock more performance in power-limited systems

Goal2: accelerate innovation in HPC power management

Enables researchers to focus effort on algorithms (via plug-ins) not
re-engineering distributed runtime infrastructure

Provides a streamlined path for deploying new ideas
» Product-grade framework w/ development+hardening backed by Intel

Drives codesign of power and performance management features in
Intel processors for better results w/ runtimes like GEO

Intel Corporation 2

Acknowledgements

GEO Core Team (Intel)

Fede Ardanaz
Chris Cantalupo
Jonathan Eastep
Richard Greco
Stephanie Labasan
Steve Sylvester
Reza Zamani

... and hiring!

Collaborators (Intel)
* David Lombard
= Tryggve Fossum
= Al Gara

Collaborators (External)
= Argonne (CORAL)
= LLNL (Rountree)

= ...and expanding!

Intel Corporation

Relationship to Standard Power APIs

= GEO s a job-level power management framework
= Manages the compute nodes in a job to a job power bound

= ... while maximizing performance or other objective functions

= With work, GEO could fit under/above other power APIs

= GEO currently interacts with other SW components through its
own interfaces (next slide)

= We're not positioning our external interfaces as standards

= Emphasis on providing an extensible framework and
advanced out-of-the-box power management strategies

* Builds on “Auto-Tuner” machine learning, control system, and
optimization technology Intel has been researching for 4 years

Intel Corporation

GEOQO Interfaces / Integration Architecture

Owner

. 3rd parties

. Intel GEO team

D Intel PM Arch team

PCU RAPL and Perf

Counter Interfaces

(Work w/ Intel GEO team to
enhance)

Intel Corporation

Advanced Auto-Tuner Capabilities

= Comprehend and mitigate dynamic load imbalance by globally
coordinating frequency and power allocations across nodes

= Leverage application-awareness and learning to recognize
patterns in application (phases), then exploit patterns to
optimize decisions

» React to phase changes at aggressive time scales (low
milliseconds) and rapidly redistribute limited power to
performance-critical resources

= Tackle the scale challenges prior techniques have swept under
the rug to enable holistic joint optimization of power policy
across the job

Intel Corporation 6

Auto-Tuner Prototype Results Summary

Speedup from Auto-Tuner at ISO Power
1.18x 1.31x 1.17x 1.22x

miniFE FFT IS NEKbone
B No Auto-Tuner M Auto-Tuner

Speedup derives from two factors: correcting load imbalance across nodes and node-local spatio-
temporal energy scheduling optimizations exploiting phases

Bars represent average results over a range of assumptions about how much power the job is
allocated and how much load imbalance is present

Experimental setup carefully emulates large-cluster load imbalance on a small cluster

Results collected while running on Xeon hardware (not simulation)

Intel Corporation

Presentation Outline

= GEO Architecture Overview
* Open Source Project Details (if time allows)

» Deep Dive: Application Feedback Interface

Intel Corporation

GEO Architecture Overview

Intel Corporation

GEQO Hierarchical Architecture

GEO manages job to a power budget and globally

coordinates frequency & power allocation decisions Root

_ _ _ Agent
Scaling challenge is addressed via tree-

hierarchical design & hierarchical policy In-band MP| ——»

= Each agent owns sub-problem: decide how based comm
to divide/balance power among children

» Power/perf telemetry is scalably Y,
aggregated so network traffic is minimal

= Tuning is globally optimized despite
distributed tuning: achieved through
Hierarchical-POMDP learning techniques

Job

P el i S R e e S

, 7 Leaf
m/ Agent

GEO tree runs in 1 reserved core per CN
» Leaf & non-leaf agents run in these cores
» Enables fast reaction times, deep analysis
= QOverhead is negligible in manycore chips CN = Compute Node
= Designing for minimal memory footprint (in compute node racks)

Intel Corporation 10

Zoom-In on Leaf Agent

Root

optional J Agent

App APIs*
Polic

e e R R = S

Node
power
budget
e \g)\w\a&% Leaf
SNk ‘6& »'w | . b Agent
Learning
Power budgeting inside the processor:
Event Energy Power » Spatio-Temporal Energy Scheduling
Counters Meters Policy (phase-adaptively allocate power

among RAPL power domains)

Processor

Intel Corporation 11

Open Source Project Details

Intel Corporation

12

GEOPM Open Source Release

Team just completed first open source release on github

Package Name: geopm (GEO power management)

Release Goal: publish docs and interfaces for community review
Non-Goal: feature-completeness

Compatibility: Red Hat RHEL7 and SUSE SLES12 Linux distros

Repository: view project and source code via
http://geopm.github.io/geocpm/

Intel Corporation

13

http://geopm.github.io/geopm/

Release Notes

= Defined interfaces and architecture for integration in HPC SW stacks

* Nailed down our modular object-oriented design in C++11 (with C
interfaces to external components / application)

= Developed solid autotools build system and gtest/gcov test
infrastructure

= Delivered support for basic static power management functionality
= E.g. Uniform Frequency Static mode
= E.g. Hybrid Frequency Static mode (Pseudo Big Core / Little Core)
= No dynamic power management yet (still under construction)

= No Auto-Tuner load balancing modes yet

Intel Corporation 14

Next Steps (Through Q1'16)

= WIP on community adoption of GEO

[DONE] Spin up collaborations with Argonne and LLNL

[WIP] Spin up collaborations with other national labs and universities
[WIP] Pursue community feedback on interfaces and documentation
[WIP] Joint research / publications with collaborators building on GEO

= WIP on the runtime for dynamic power management

[DONE] MPI communications between levels of GEO runtime hierarchy
[DONE] SLURM plug-in (initial development vehicle)

[DONE] Application feedback interface implementation
» Recall: application markup is initially required for dynamic power mgmt modes
= Long-term goal is for GEO to automatically infer the info without the API

[DONE] Extensibility in support for processor features
[WIP] Extensibility in decision algorithms

Intel Corporation 15

Deep Dive: Application Feedback
Interface

Input Output

Intel Corporation

Overview

= C interfaces provided in a lib that the app links against
* They resemble typical profiler interfaces

= Consist of annotation functions for programmers to
provide GEO info about app critical path and phases:

* |[ndicate where bulk synchronizations occur (points where load
imbalance results will result in degraded performance)

» [ndicate where phase changes occur in an MPI rank (i.e. phase
entry and exit)

» Indicate hints specifying whether phases will be compute-,
memory-, or communication-intensive

* Indicate how much progress each MPI rank has made toward
completing the current phase (identify critical path)

Intel Corporation 17

Profiler Management / Reporting

int geopm prof create (
const char *name,
size t table size,
const char *sample key,
MPI Comm comm,
struct geopm prof c **prof);

int geopm prof region (

struct geopm prof c *prof,
const char *region name,
long policy hint,
uinté64_t *region id);

int geopm prof print (
struct geopm prof c *prof,

int geopm prof destroy (
struct geopm prof c *prof);

Intel Corporation

const char *file name,
int depth);

18

Phase Markup / Bulk Sync Point

int geopm prof enter (
struct geopm prof c *prof,
uint64 t region id);

int geopm prof exit(
struct geopm prof c *prof,
uint64_t region id);

int geopm prof outer sync(

struct geopm prof c *prof,
uint64_t region id);

Intel Corporation

19

Progress Reporting (1)

» Interfaces provide two options for reporting progress:
= Special case (direct determination of critical path):

— Assume: MPI+OpenMP w/ statically scheduled parallel
regions

— Assume: Total work for each individual thread is known

— APl computes rank’s progress as the min progress any thread
made toward completing its total work (this is a %)

» General case (estimation of critical path):
— Assume: MPI+X

— Assume: Total work is not known for each individual thread
but the total work across all threads is known

— APl computes rank’s progress as sum of work completed on
all threads / total work all threads will perform (this is a %)

Intel Corporation 20

Progress Reporting (2)

int geopm prof progress (double geopm progress threaded min (
struct geopm prof c *prof, int num thread,
uint64_t region id, size_t stride,
double fraction); const uint32_t *progress,

const double *norm);

int geopm omp sched static_norm(

int num iter, double geopm progress_ threaded sum(
int chunk size, int num thread,

int num thread, size_t stride,

double *norm); const uint32_t *progress,

double norm) ;

Intel Corporation 21

Example of Application Markup (1)

max threads = omp get max threads();
posix memalign ((void **)&progress, cache line size,

cache line size * max threads);
memset (progress, 0, cache line size * max threads);
norm = (double *)malloc (sizeof (double) * max threads);
geopm omp sched static_norm(num iter, chunk size,

max threads, norm);
geopm prof region (prof, "main-loop",
GEOPM POLICY HINT UNKNOWN, ®ion id);

#pragma omp parallel default (shared) private (i, progress ptr)
{

progress ptr = progress + stride * omp get thread num();
#pragma omp for schedule(static, chunk size)
for (1 = 0; 1 < num iter; ++1i) {

x += do _something (i) ;
(*progress ptr) ++;
1f (omp get thread num() == 0) {
thread progress = geopm progress_threaded min (
omp get num threads (), stride, progress, norm);
geopm prof progress (prof, region id, thread progress);

Intel Corporation

Example of Application Markup (2)

max threads = omp get max threads();

posix memalign ((void **)&progress, cache line size,
cache line size * max threads);

memset (progress, 0, cache line size * max threads);

norm = 1.0 / num iter;

geopm prof region (prof, "main-loop",
GEOPM POLICY HINT UNKNOWN, ®ion id);

#pragma omp parallel default (shared) private (i, progress ptr)
{

progress ptr = progress + stride * omp get thread num();
#pragma omp for schedule(static, chunk size)
for (1 = 0; 1 < num iter; ++1i) {

x += do _something (i) ;
(*progress ptr) ++;
1f (omp get thread num() == 0) {
thread progress = geopm progress_threaded sum
omp get num threads (), stride, progress, norm);
geopm prof progress (prof, region id, thread progress);

Intel Corporation

Coming Soon: Plug-In Interfaces

= Completion targeted for Q1'16 (hopefully early Q1)

= Platform plug-ins

* Provides high-level abstraction of low-level processor interfaces
for power & performance monitoring and control

= E.g. control registers for RAPL, P-states, event counters, etc.

= Simplifies porting to new Intel processors with new features (or
processors from other vendors)

= Decider plug-ins
= Enables researchers to extend GEO'’s control algorithms

= E.g.site-specific power management strategies

= E.g. application-specific power management strategies

Intel Corporation 24

Backup Slides

Intel Corporation

26

Power Bounds

* Load imbalance is a big challenge
= Apps tend to do bulk synchronizations

= Performance is determined by last node
to arrive at bulk synchronization point

= Power is becoming a scarce resource
that must be managed carefully

= Future systems are expected to be
power-limited due to site limits

» Processors are power-limited due to
thermal design power limits
= Current strategies for managing power aggravate load imbalance
= Uniform node power caps expose frequency variation from manufacturing variation

= Uncoordinated Turbo/throttle decisions on nodes expose frequency variation
= Results are far from optimal

Intel Corporation 27

Comparison Against Theoretical Bounds

= Summary

= We achieved near-ideal benefits for most workloads with negligible losses vs. bounds
= But, we note non-negligible losses of benefit for Integer Sort

(o)

Example of IS Losses w J0W Budget Config

X o3 R S X

1.2 - o 3 o ~ S

3. 1 - (o)} o)}
< 0.8 -
206 -
= 0.4 -
w02 -
0 -

0% 10% 20% 30% 40%

% Delay

= X-axis is a parameter for how much load imbalance we inject into the system
= Root-cause of benefit losses: some is initial search time, most is control error due to noise
= |Sis considerably noisier than FFT and miniFE; working to improve handling of noise more

Intel Corporation 28

GEO Advanced Power Balancing Modes

Can configure objective function for how

. . o . Root
GEO will dynamically mitigate imbalance Agznt
» a) Equalize processor frequency
» b) Equalize node’s app progress b\)d%e‘
(steer power to critical path) o
Q% g
o
\s‘@p
W © N
" ‘\@o
Sa
4\&%@"’6 Leaf
Q\%%oo' & Agent

Intel Corporation 29

