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GEO Project Scope and Goals

GEO is an open source, scalable, extensible runtime and
framework for power management in HPC systems

* Provides extensibility via plug-ins + advanced default functionality

Developing GEO through CORAL NRE project with
potential deployment on Aurora system at Argonne

Goal1: unlock more performance in power-limited systems

Goal2: accelerate innovation in HPC power management

Enables researchers to focus effort on algorithms (via plug-ins) not
re-engineering distributed runtime infrastructure

Provides a streamlined path for deploying new ideas
»  Product-grade framework w/ development+hardening backed by Intel

Drives codesign of power and performance management features in
Intel processors for better results w/ runtimes like GEO
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Relationship to Standard Power APIs

= GEO s a job-level power management framework
= Manages the compute nodes in a job to a job power bound

= ... while maximizing performance or other objective functions

= With work, GEO could fit under/above other power APIs

= GEO currently interacts with other SW components through its
own interfaces (next slide)

= We're not positioning our external interfaces as standards

= Emphasis on providing an extensible framework and
advanced out-of-the-box power management strategies

* Builds on “Auto-Tuner” machine learning, control system, and
optimization technology Intel has been researching for 4 years
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GEOQO Interfaces / Integration Architecture

Owner

. 3rd parties

. Intel GEO team

D Intel PM Arch team

PCU RAPL and Perf

Counter Interfaces

(Work w/ Intel GEO team to
enhance)
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Advanced Auto-Tuner Capabilities

= Comprehend and mitigate dynamic load imbalance by globally
coordinating frequency and power allocations across nodes

= Leverage application-awareness and learning to recognize
patterns in application (phases), then exploit patterns to
optimize decisions

» React to phase changes at aggressive time scales (low
milliseconds) and rapidly redistribute limited power to
performance-critical resources

= Tackle the scale challenges prior techniques have swept under
the rug to enable holistic joint optimization of power policy
across the job

Intel Corporation 6



Auto-Tuner Prototype Results Summary

Speedup from Auto-Tuner at ISO Power
1.18x 1.31x 1.17x 1.22x

miniFE FFT IS NEKbone
B No Auto-Tuner M Auto-Tuner

Speedup derives from two factors: correcting load imbalance across nodes and node-local spatio-
temporal energy scheduling optimizations exploiting phases

Bars represent average results over a range of assumptions about how much power the job is
allocated and how much load imbalance is present

Experimental setup carefully emulates large-cluster load imbalance on a small cluster

Results collected while running on Xeon hardware (not simulation)
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Presentation Outline

= GEO Architecture Overview
* Open Source Project Details (if time allows)

» Deep Dive: Application Feedback Interface
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GEO Architecture Overview
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GEQO Hierarchical Architecture

GEO manages job to a power budget and globally

coordinates frequency & power allocation decisions Root

_ _ _ Agent
Scaling challenge is addressed via tree-

hierarchical design & hierarchical policy In-band MP| ——»

= Each agent owns sub-problem: decide how based comm
to divide/balance power among children

» Power/perf telemetry is scalably Y,
aggregated so network traffic is minimal

= Tuning is globally optimized despite
distributed tuning: achieved through
Hierarchical-POMDP learning techniques

Job

P el i S R e e S

, 7 Leaf
m/ Agent

____________________________________

GEO tree runs in 1 reserved core per CN
» Leaf & non-leaf agents run in these cores
» Enables fast reaction times, deep analysis
= QOverhead is negligible in manycore chips CN = Compute Node
= Designing for minimal memory footprint (in compute node racks)
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Zoom-In on Leaf Agent

Root

optional J Agent

App APIs*
Polic

e e R R = S

Node
power
budget
e \g)\w\a&% Leaf
SNk ‘6& »'w | . b Agent
Learning
Power budgeting inside the processor:
Event Energy Power » Spatio-Temporal Energy Scheduling
Counters Meters Policy (phase-adaptively allocate power

among RAPL power domains)

Processor
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Open Source Project Details
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GEOPM Open Source Release

Team just completed first open source release on github

Package Name: geopm (GEO power management)

Release Goal: publish docs and interfaces for community review
Non-Goal: feature-completeness

Compatibility: Red Hat RHEL7 and SUSE SLES12 Linux distros

Repository: view project and source code via
http://geopm.github.io/geocpm/

Intel Corporation
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Release Notes

= Defined interfaces and architecture for integration in HPC SW stacks

* Nailed down our modular object-oriented design in C++11 (with C
interfaces to external components / application)

= Developed solid autotools build system and gtest/gcov test
infrastructure

= Delivered support for basic static power management functionality
= E.g. Uniform Frequency Static mode
= E.g. Hybrid Frequency Static mode (Pseudo Big Core / Little Core)
= No dynamic power management yet (still under construction)

= No Auto-Tuner load balancing modes yet
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Next Steps (Through Q1'16)

= WIP on community adoption of GEO

[DONE] Spin up collaborations with Argonne and LLNL

[WIP] Spin up collaborations with other national labs and universities
[WIP] Pursue community feedback on interfaces and documentation
[WIP] Joint research / publications with collaborators building on GEO

= WIP on the runtime for dynamic power management

[DONE] MPI communications between levels of GEO runtime hierarchy
[DONE] SLURM plug-in (initial development vehicle)

[DONE] Application feedback interface implementation
» Recall: application markup is initially required for dynamic power mgmt modes
= Long-term goal is for GEO to automatically infer the info without the API

[DONE] Extensibility in support for processor features
[WIP] Extensibility in decision algorithms
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Deep Dive: Application Feedback
Interface

Input Output
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Overview

= C interfaces provided in a lib that the app links against
* They resemble typical profiler interfaces

= Consist of annotation functions for programmers to
provide GEO info about app critical path and phases:

* |[ndicate where bulk synchronizations occur (points where load
imbalance results will result in degraded performance)

» [ndicate where phase changes occur in an MPI rank (i.e. phase
entry and exit)

» Indicate hints specifying whether phases will be compute-,
memory-, or communication-intensive

* Indicate how much progress each MPI rank has made toward
completing the current phase (identify critical path)
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Profiler Management / Reporting

int geopm prof create (
const char *name,
size t table size,
const char *sample key,
MPI Comm comm,
struct geopm prof c **prof);

int geopm prof region (

struct geopm prof c *prof,
const char *region name,
long policy hint,
uinté64_t *region id);

int geopm prof print (
struct geopm prof c *prof,

int geopm prof destroy (
struct geopm prof c *prof);

Intel Corporation

const char *file name,
int depth);
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Phase Markup / Bulk Sync Point

int geopm prof enter (
struct geopm prof c *prof,
uint64 t region id);

int geopm prof exit(
struct geopm prof c *prof,
uint64_t region id);

int geopm prof outer sync(

struct geopm prof c *prof,
uint64_t region id);

Intel Corporation
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Progress Reporting (1)

» Interfaces provide two options for reporting progress:
= Special case (direct determination of critical path):

— Assume: MPI+OpenMP w/ statically scheduled parallel
regions

— Assume: Total work for each individual thread is known

— APl computes rank’s progress as the min progress any thread
made toward completing its total work (this is a %)

» General case (estimation of critical path):
— Assume: MPI+X

— Assume: Total work is not known for each individual thread
but the total work across all threads is known

— APl computes rank’s progress as sum of work completed on
all threads / total work all threads will perform (this is a %)

Intel Corporation 20



Progress Reporting (2)

int geopm prof progress ( double geopm progress threaded min (
struct geopm prof c *prof, int num thread,
uint64_t region id, size_t stride,
double fraction); const uint32_t *progress,

const double *norm);

int geopm omp sched static_norm(

int num iter, double geopm progress_ threaded sum(
int chunk size, int num thread,

int num thread, size_t stride,

double *norm); const uint32_t *progress,

double norm) ;
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Example of Application Markup (1)

max threads = omp get max threads();
posix memalign ((void **)&progress, cache line size,

cache line size * max threads);
memset (progress, 0, cache line size * max threads);
norm = (double *)malloc (sizeof (double) * max threads);
geopm omp sched static_norm(num iter, chunk size,

max threads, norm);
geopm prof region (prof, "main-loop",
GEOPM POLICY HINT UNKNOWN, &region id);

#pragma omp parallel default (shared) private (i, progress ptr)
{

progress ptr = progress + stride * omp get thread num();
#pragma omp for schedule(static, chunk size)
for (1 = 0; 1 < num iter; ++1i) {

x += do _something (i) ;
(*progress ptr) ++;
1f (omp get thread num() == 0) {
thread progress = geopm progress_threaded min (
omp get num threads (), stride, progress, norm);
geopm prof progress (prof, region id, thread progress);
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Example of Application Markup (2)

max threads = omp get max threads();

posix memalign ((void **)&progress, cache line size,
cache line size * max threads);

memset (progress, 0, cache line size * max threads);

norm = 1.0 / num iter;

geopm prof region (prof, "main-loop",
GEOPM POLICY HINT UNKNOWN, &region id);

#pragma omp parallel default (shared) private (i, progress ptr)
{

progress ptr = progress + stride * omp get thread num();
#pragma omp for schedule(static, chunk size)
for (1 = 0; 1 < num iter; ++1i) {

x += do _something (i) ;
(*progress ptr) ++;
1f (omp get thread num() == 0) {
thread progress = geopm progress_threaded sum
omp get num threads (), stride, progress, norm);
geopm prof progress (prof, region id, thread progress);
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Coming Soon: Plug-In Interfaces

= Completion targeted for Q1'16 (hopefully early Q1)

= Platform plug-ins

* Provides high-level abstraction of low-level processor interfaces
for power & performance monitoring and control

= E.g. control registers for RAPL, P-states, event counters, etc.

= Simplifies porting to new Intel processors with new features (or
processors from other vendors)

= Decider plug-ins
= Enables researchers to extend GEO'’s control algorithms

= E.g.site-specific power management strategies

= E.g. application-specific power management strategies
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Power Bounds

* Load imbalance is a big challenge
= Apps tend to do bulk synchronizations

= Performance is determined by last node
to arrive at bulk synchronization point

= Power is becoming a scarce resource
that must be managed carefully

= Future systems are expected to be
power-limited due to site limits

» Processors are power-limited due to
thermal design power limits
= Current strategies for managing power aggravate load imbalance
= Uniform node power caps expose frequency variation from manufacturing variation

= Uncoordinated Turbo/throttle decisions on nodes expose frequency variation
= Results are far from optimal
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Comparison Against Theoretical Bounds

= Summary

= We achieved near-ideal benefits for most workloads with negligible losses vs. bounds
= But, we note non-negligible losses of benefit for Integer Sort

(o)

Example of IS Losses w J0W Budget Config

X o3 R S X
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= 0.4 -
w02 -
0 -

0% 10% 20% 30% 40%

% Delay

= X-axis is a parameter for how much load imbalance we inject into the system
= Root-cause of benefit losses: some is initial search time, most is control error due to noise
= |Sis considerably noisier than FFT and miniFE; working to improve handling of noise more
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GEO Advanced Power Balancing Modes

Can configure objective function for how

. . o . Root
GEO will dynamically mitigate imbalance Agznt
» a) Equalize processor frequency
» b) Equalize node’s app progress b\)d%e‘
(steer power to critical path) o
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