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Goal is to reduce data center cooling energy use 
to 10% of IT & 5% of a typical data center energy

Traditional data center cooling infrastructure
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Innovative data center design 
– Eliminate chillers and room air-conditioning.
- Reject heat to ambient using server liquid cooling.
- Reduce refrigerant and make up water usage.
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R. Chu, M. Iyengar, V. Kamath, and R. 
Schmidt, 2010, “Energy Efficient Apparatus 

and Method for Cooling an Electronics 
Rack”, US Patent 7791882 B2
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Piping layout inside the lab
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Water Cooling Unit (WCU) – Buffer unit

7

M. Ellsworth, L. Campbell, R. Simons, M. Iyengar, R. Chu, and 
R. Schmidt, 2008, “The Evolution of Water Cooling for IBM 

Large Server Systems:  Back to the Future”, Proceedings of the 
IEEE ITherm Conference in Orlando, USA, May.
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Programmable Logic 
Control (PLC)

 Collects power/thermal data 
from data center loop devices.
 Controls external pump, 
external fan, and three-way 
valve (winter).
 Allows Labview full control or 
uses embedded control 
algorithm for robust operation.
 Takes over control in case of 
“safety” events.
 Can be turned on and directly 
used in PLC mode.
 Provides learning for 
integrating commercial strength 
BMS with rack level operation.
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Rack level cooling design
- Cool servers using warm water and air supply.
- Totally (100%) liquid cooled at rack level.
- Advanced thermal interfaces in key locations.
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R. Schmidt, M. Iyengar, D. Porter, 
G. Weber, D. Graybill, and J. 
Steffes, 2010, “Open Side Car 
Heat Exchanger that Removes 
Entire Server Heat Load Without 
any Added Fan Power”, 
Proceedings of the IEEE ITherm 
Conference, Las Vegas, June.

U.S. Patent 6,775,137, “Method 
and Apparatus for Combined Air 
and Liquid Cooling of Stacked 
Electronic Components,” R.C. Chu, 
M.J. Ellsworth, Jr., E. Furey, R.R. 
Schmidt, and R.E. Simons
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IBM System X 1U server – x3550M3

Air cooled server Water cooled server with CPU 
and DIMM liquid cooling w/ 3 fans
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Patent pending
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Thermal chamber test for 
air/liquid cooled servers
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Date Stamp Time Stamp Ave. outside 
air temp

Ave. IT 
Power

Ave. Cooling 
Power

Cooling power 
as % of IT

Ave. server 
inlet air temp

Ave. rack inlet 
water temp

C kW kW C C
8/4/2011 4:00:30 PM 28.1 13.43 0.440 3.28 38.1 36.3
8/4/2011 4:59:56 PM 28.1 13.47 0.442 3.28 38.5 36.4
8/4/2011 6:00:22 PM 27.9 13.50 0.441 3.27 38.6 36.4
8/4/2011 7:00:54 PM 27.3 13.48 0.440 3.26 38.5 36.2
8/4/2011 8:01:25 PM 26.3 13.43 0.433 3.23 38.2 35.8
8/4/2011 9:01:54 PM 24.9 13.36 0.433 3.24 37.7 35.2
8/4/2011 10:02:17 PM 23.2 13.22 0.438 3.31 36.9 34.2
8/4/2011 11:02:41 PM 22.4 13.09 0.437 3.33 36.2 33.3
8/5/2011 12:03:04 AM 21.7 12.99 0.439 3.38 35.5 32.6
8/5/2011 1:03:27 AM 20.9 12.96 0.440 3.39 35.1 32.0
8/5/2011 2:03:49 AM 20.2 12.88 0.443 3.44 34.6 31.2
8/5/2011 3:04:12 AM 19.8 12.81 0.441 3.44 34.3 30.8
8/5/2011 4:04:34 AM 19.4 12.77 0.442 3.46 34.0 30.4
8/5/2011 5:04:58 AM 19.1 12.76 0.443 3.47 33.9 30.3
8/5/2011 6:05:24 AM 19.0 12.76 0.448 3.51 33.8 30.4
8/5/2011 7:05:46 AM 19.0 12.77 0.440 3.45 33.9 30.4
8/5/2011 8:06:10 AM 20.8 12.79 0.437 3.41 34.3 31.1
8/5/2011 9:06:41 AM 23.3 13.01 0.432 3.32 35.8 33.3
8/5/2011 10:07:10 AM 25.0 13.21 0.432 3.27 37.2 35.0
8/5/2011 11:07:40 AM 27.4 13.37 0.437 3.27 38.0 35.9
8/5/2011 12:08:12 PM 29.1 13.48 0.449 3.33 38.6 36.6
8/5/2011 1:08:44 PM 30.5 13.58 0.465 3.43 39.3 37.3
8/5/2011 1:55:08 PM 31.0 13.58 0.477 3.51 39.5 37.6

Experimental data for 22 h test (August 2011)
Total data center cooling power is less than 3.5% of IT for a hot NY summer day
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Temperature data for 22 h test (August 2011)
Total data center cooling power is 3.5% of IT for a hot NY summer day
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Analyses for 9 US cities for a summer day
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Energy and energy cost savings
9 US cities for a summer day
1000 kW IT load, Aug 15 ave.

20

Typical data center 
cooling, kW

DELC based data 
center cooling, kW

Energy 
Savings, kWh

Local cost of 
electricity, $/kWh

Energy cost 
savings, $

New York City 500 20.7 11504 0.0973 1119.3
Chicago 500 15.4 11631 0.075 872.3

San Francisco 500 15.0 11640 0.1078 1254.8
Raleigh 500 15.6 11625 0.0613 712.6
Dallas 500 31.5 11243 0.0658 739.8

Phoenix 500 32.5 11220 0.0674 756.2
Seattle 500 15.0 11640 0.0396 460.9
Buffalo 500 16.0 11617 0.0973 1130.3

Poughkeepsie 500 15.5 11627 0.0973 1131.3

50% of IT power
DoE 2009 Vision and 
Roadmap document

Less than 3.5% 
of IT power

http://www.electricchoic..com/electricity.prices-by-state.php
2010 Industrial rate assumed

IT
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IBM warm water cooled cluster - 2012

21

I. Meijer, 2011, “Hot Water Cooling for Energy-Hungry Datacenters”.
 Highly energy-efficient hybrid-cooling solution:

– Compute racks 
• 90% Heat flux to warm water
• 10% Heat flux to CRAH

– Switch / Storage racks
• Rear door heat exchangers

 Compute node power consumption reduced ~ 10% due to lower 
component temperatures and no fans.

 Power Usage Effectiveness PTotal / PIT: PUE ~ 1.1
 Heat recovery is enabled by the compute node design.
 Energy Reuse Effectiveness (PTotal – PReuse) / PIT: ERE ~ 0.3
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IBM warm water cooled servers - 2012

22

Ref.: I. Meijer, SC11, “Hot Water Cooling for Energy-Hungry Datacenters”.
 Heat flux > 90% to water; very low chilled water requirement
 Power advantage over air-cooled node: warm water cooled ~10%     

(cold water cooled ~15%) due to lower Tcomponents and no fans.
 Typical operating conditions: Tair = 25 – 35°C, Twater = 18 – 45°C
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