
Computer Architecture for the Next Decade
(nee.. Exascale)

Adjusting to the new normal for computing

John Shalf
Department Head: Computer Science and Data Sciences (CSDS)
CTO: National Energy Research Scientific Computing Center (NERSC)

EEHPC Workshop, November 18, 2013

High End Modeling and Data Assimilation
For Advanced Combustion Research

Advanced “capability-class” solvers! Access to leading edge computational resources!

Approach: !Combine unique codes and resources to maximize benefits of
high performance computing for turbulent combustion research!

DNS to investigate
combustion phenomena
at smallest scales
 no modeling
 limited applicability

LES to investigate
coupling over full
range of scales in
experiments
 minimal modeling
 full geometries

CRF Computational
Combustion and
Chemistry Laboratory

Combustion Research
and Computational
Visualization Facility

DOE Office of Science
Laboratories
 LBNL NERSC
 ORNL OLCF
 ANL ALCF

INCITE Program

Image courtesy of Oak Ridge National Laboratory

Joint OS-EERE Funding!

Ofelein, Chen: Sandia 2009

Scientific Breakthroughs Enabled by
Algorithms, Applications, and HPC Capability

Mechanism Reduction

Detailed Device
Models
•  e.g. Gas Turbines,
IC Engines, Liquid
Rockets

Kinetic Experiments

Mechanism Development

Device Validation Experiments

Sub-Model Validation Experiments

Chemical Dynamics
Theory

Turbulent Flame Experiments

Mechanistic Experiments

Combustion Research has demonstrated a
long history of scientific breakthroughs
resulting from joint advances in Algorithms,
Applications, and HPC Capability

Need for more simulation fidelity
drives insatiable need for larger
scale systems.

Two Decades of Exponential Performance
Improvements

Source: TOP500 November 2012

0.1	

1	

10	

100	

1000	

10000	

100000	

1000000	

10000000	

100000000	

1E+09	

1994	
 1996	
 1998	
 2000	
 2002	
 2004	
 2006	
 2008	
 2010	
 2012	

59.7 GFlop/s

400 MFlop/s

1.17 TFlop/
s

17.6 PFlop/
s

76.5 TFlop/s

162 PFlop/s

SUM

N=1

N=500

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s

1 Eflop/s

Technology Challenges for the Next Decade

1/23/2013 Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 5

!"

!#"

!##"

!###"

!####"

$%
"&'
(%
"

)*
+,-
.*
/"

!0
0"
12
345
,6"

70
0"
12
345
,6"

(8
345
,69
$)
:;
"

<14
=<"
,2.
*/
41
22
*4
."

>/
1-
-"-
?-
.*
0"

21@"

A#!B"

Internode/MPI+
Communica2on+

On4chip++/+CMP+
communica2on+

Intranode/SMP+
Communica2on+

Pi
co
jo
ul
es
*P
er
*O
pe

ra
/o

n*

Parallelism is
growing at

exponential rate

Power is leading
constraint for future
performance growth

By 2018, cost of a FLOP will be
less than cost of moving 5mm

across the chip’s surface (locality
will really matter)

Reliability going down for
large-scale systems, but
also to get more energy

efficiency for small systems

Memory Technology
improvements are

slowing down

It’s the End of the World as We Know It!

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

01
/0
1/
96

01
/0
1/
00

01
/0
1/
04

01
/0
1/
08

01
/0
1/
12

Co
m
po

un
d
An

nu
al
Gr
ow

th
Ra

te
:C
AG

R

Rmax (Gflop/s) Total Cores

Ave Cycles/sec per core (Mhz) Mem/Core (GB)

Source: Kogge and Shalf, IEEE CISE 2013

Summary Trends

Kogge, Shalf
CiSE 2013

10

100

1,000

10,000

100,000

1,000,000

1985 1990 1995 2000 2005 2010 2015 2020
Year of Introduction

Computing Crisis is Not Just about Exascale

 Expectation Gap

Microprocessor Performance “Expectation Gap (1985-2020 projected)

Industry motivated, path forward is unclear

Whats wrong with current HPC Systes?
Designed for Constraints from 30 years ago! (wrong target!!)
Old Constraints

•  Peak clock frequency as primary
limiter for performance improvement

•  Cost: FLOPs are biggest cost for
system: optimize for compute

•  Concurrency: Modest growth of
parallelism by adding nodes

•  Memory scaling: maintain byte per
flop capacity and bandwidth

•  Locality: MPI+X model (uniform
costs within node & between nodes)

•  Uniformity: Assume uniform
system performance

•  Reliability: It’s the hardware’s
problem

New Constraints

•  Power is primary design constraint for
future HPC system design

•  Cost: Data movement dominates:
optimize to minimize data movement

•  Concurrency: Exponential growth of
parallelism within chips

•  Memory Scaling: Compute growing
2x faster than capacity or bandwidth

•  Locality: must reason about data
locality and possibly topology

•  Heterogeneity: Architectural and
performance non-uniformity increase

•  Reliability: Cannot count on
hardware protection alone

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 8 1/23/2013

Fundamentally breaks our current programming paradigm and computing ecosystem

!"

!#"

!##"

!###"

!####"

$%
"&'
(%
"

)*
+,-
.*
/"

!0
0"
12
345
,6"

70
0"
12
345
,6"

(8
345
,69
$)
:;

"

<14
=<"
,2.
*/
41
22
*4
."

>/
1-
-"-
?-
.*
0"

21@"

A#!B"

Internode/MPI+
Communica2on+

On4chip++/+CMP+
communica2on+

Intranode/SMP+
Communica2on+

Pi
co
jo
ul
es
*P
er
*O
pe

ra
/o

n*

Programming Models are a Reflection of the Underlying
Machine Architecture
•  Express what is important for performance
•  Hide complexity that is not consequential to performance

Programming Models are Increasingly Mismatched with
Underlying Hardware Architecture
•  Changes in computer architecture trends/costs
•  Performance and programmability consequences

Technology changes have deep and pervasive effect on
ALL of our software systems (and how we program them)
•  Change in costs for underlying system affect what we expose
•  What to virtualize
•  What to make more expressive/visible
•  What to ignore

The Programming Systems Challenge

The Programming Model is a Reflection of
the Underlying Abstract Machine Model

Equal cost SMP/PRAM model
•  No notion of non-local access
•  int [nx][ny][nz];

Cluster: Distributed memory model
•  CSP: Communicating Sequential Processes
•  No unified memory
•  int [localNX][localNY][localNZ];

MPI+X: (HCSP)
•  Data is LOCAL or REMOTE
•  node[#] int [nx][ny][nz];

Whats Next?

10

SMP

P P P P P

P P P P P

MPI Distributed Memory

local

P P P P P

shared

PGAS

Parameterized Machine Model
(what do we need to reason about when designing a new code?)

Cores
• How Many
• Heterogeneous
• SIMD Width

Network on Chip (NoC)
• Are they equidistant or
• Constrained Topology (2D)

On-Chip Memory Hierarchy
• Automatic or Scratchpad?
• Memory coherency method?

Node Topology
• NUMA or Flat?
• Topology may be important
• Or perhaps just distance

Memory
• Nonvolatile / multi-tiered?
• Intelligence in memory (or not)

Fault Model for Node
•  FIT rates, Kinds of faults
•  Granularity of faults/recovery

Interconnect
• Bandwidth/Latency/Overhead
• Topology

Primitives for data movement/
sync

• Global Address Space or
messaging?
• Synchronization primitives/Fences

For each parameterized machine attribute, can
•  Ignore it: If ignoring it has no serious power/performance consequences
•  Expose it (unvirtualize): If there is not a clear automated way of make decisions

•  Must involve the human/programmer in the process (make pmodel more expressive)
•  Directives to control data movement or layout (for example)

•  Abstract it (virtualize): If it is well enough understood to support an automated mechanism
to optimize layout or schedule
•  This makes programmers life easier (one less thing to worry about)

Want model to be as simple as possible, but not neglect any aspects of
the machine that are important for performance

Abstract Machine Model
(what do we need to reason about when designing a new code?)

•  Cost to move a bit on copper wire:
•  Power = Bitrate * Length / cross-section area

•  Wire data capacity constant as feature size shrinks
•  Cost to move bit proportional to distance
•  ~1TByte/sec max feasible off-chip BW (10GHz/pin)
•  Photonics reduces distance-dependence of bandwidth

The Problem with Wires:
Energy to move data proportional to distance

Copper requires to signal amplification
even for on-chip connections

Photonics requires no redrive
and passive switch little power

1"

10"

100"

1000"

10000"

DP
"FL
OP
"

Re
gis
ter
"

1m
m"
on
3ch
ip"

5m
m"
on
3ch
ip"

15
mm

"on
3ch
ip"

Off
3ch
ip/
DR
AM

"

loc
al"
int
erc
on
ne
ct"

Cro
ss"
sys
tem

"

2008"(45nm)"

2018"(11nm)"

Pi
co
jo
ul
es
*P
er
*6
4b

it*
op

er
a2

on
*

Cost of Data Movement Increasing Relative to Ops

FLOPs will cost less
than on-chip data

movement! (NUMA)

FLO
P

s

Data Locality Management

Vertical Locality Management
(spatio-temporal optimization)

Horizontal Locality Management
(topology optimization)

15

0

2

4

6

8

10

12

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 6 12

768 384 256 128 64

M
em

or
y

/ G
B

 p
er

 n
od

e

Ti
m

e
/ s

OpenMP threads / MPI tasks

"DGEMM" FFT

G
O
O
D

Requires user
training to

mitigate NUMA
performance

issues.

Current Practices (2-level Parallelism)
NUMA Effects Ignored (with huge consequence)

MPI+OMP Hybrid
•  Reduces memory footprint
•  Increases performance up to NUMA-node limit
•  Then programmer responsible for matching up computation with data

layout!! (UGH!)
•  Makes library writing difficult and Makes AMR nearly impossible!

It’s the Revenge
of the SGI
Origin2000

Bad News!

Expressing Hierarchical Layout
Old Model (OpenMP)
•  Describe how to parallelize loop iterations
•  Parallel “DO” divides loop iterations evenly among

processors
•  . . . but where is the data located?

New Model (Data-Centric)
•  Describe how data is laid out in memory
•  Loop statements operate on data where it is located
•  Similar to MapReduce, but need more sophisticated

descriptions of data layout for scientific codes

forall_local_data(i=0;i<NX;i++;A) !
!C[j]+=A[j]*B[i][j]);!

17

Data-Centric Programming Model
(current compute-centric models are mismatched with emerging hardware)

Building up a hierarchical layout
•  Layout block coreblk {blockx,blocky};
•  Layout block nodeblk {nnx,nny,nnz};
•  Layout hierarchy myheirarchy {coreblk,nodeblk};
•  Shared myhierarchy double a[nx][ny][nz];

18

•  Then use data-localized parallel loop
 doall_at(i=0;i<nx;i++;a){

 doall_at(j=0;j<ny;j++;a){
 doall_at(k=0;k<nz;k++;a){

 a[i][j][k]=C*a[i+1]…>
•  And if layout changes, this loop remains the

same

Satisfies the request of the application developers
(minimize the amount of code that changes)

Tiling Formulation: abstracts both data locality and
massive parallelism (both exascale challenges)

Expose massive degrees of parallelism through domain
decomposition
•  Represent an atomic unit of work
•  Task scheduler works on tiles
Core concept for data locality
•  Vertical data movement
–  Hierarchical partitioning

•  Horizontal data movement
–  Co-locate tiles sharing the same data by respecting tile topology

Multi-level parallelism
•  Coarse-grain parallelism: across tiles
•  Fine-grain parallelism: vectorization, instruction ordering etc. within a

tile

TiDA: Tiling as a Durable Abstraction
(Didem Unat, SC13)

Box 2

Box 1

Box 2

Box 3

Box 4

Box 5

Tile (1,1) Tile (1,2)

Tile (2,1) Tile (2,2)

Tile (3,1) Tile (3,2)

Tiled Box 2

TiDA centralizes and parameterizes the tiling information at the data
structure
•  Direct approach for memory affinity management for data locality
•  Expose massive degrees of parallelism through domain decomposition

Heterogeneity / Inhomogeneity
Async Programming Models?

Assumptions of Uniformity is Breaking
(many new sources of heterogeneity)

•  Heterogeneous compute engines (hybrid/GPU
computing)

•  Fine grained power mgmt. makes homogeneous
cores look heterogeneous
–  thermal throttling – no longer guarantee deterministic

clock rate
•  Nonuniformities in process technology creates

non-uniform operating characteristics for cores on
a CMP
–  Near Threshold Voltage (NTV)

•  Fault resilience introduces inhomogeneity in
execution rates
–  error correction is not instantaneous
–  And this will get WAY worse if we move towards software-

based resilience

1/23/2013 Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 22

Bulk Synchronous Execution

Assumptions of Uniformity is Breaking
(many new sources of heterogeneity)

•  Heterogeneous compute engines (hybrid/GPU
computing)

•  Fine grained power mgmt. makes homogeneous
cores look heterogeneous
–  thermal throttling – no longer guarantee deterministic

clock rate
•  Nonuniformities in process technology creates

non-uniform operating characteristics for cores on
a CMP
–  Near Threshold Voltage (NTV)

•  Fault resilience introduces inhomogeneity in
execution rates
–  error correction is not instantaneous
–  And this will get WAY worse if we move towards software-

based resilience

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 23

Bulk Synchronous Execution

Near Threshold Voltage (NTV): Shekhar Borkar (Intel)
The really big opportunities for energy efficiency require codesign!

•  Heterogeneous compute engines (hybrid/GPU
computing)

•  Fine grained power mgmt. makes homogeneous
cores look heterogeneous
–  thermal throttling – no longer guarantee deterministic

clock rate
•  Nonuniformities in process technology creates

non-uniform operating characteristics for cores on
a CMP
–  Near Threshold Voltage (NTV)

•  Fault resilience introduces inhomogeneity in
execution rates
–  error correction is not instantaneous
–  And this will get WAY worse if we move towards software-

based resilience

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 24

Bulk Synchronous Execution

f

f

f f

f/2

f/2

f/2

f/2

f/4

f/4

f/4 f/4

f

f

f f

f

f

f

f

f

f

f f

Fig: Shekhar Borkar

Conventional NTV

Near Threshold Voltage (NTV): Shekhar Borkar (Intel)
The really big opportunities for energy efficiency require codesign!

Improving energy efficiency or performance of
individual components doesn’t really need co-design
–  Memory is faster, then odds are that the software will

run faster
–  if its better, that’s good!

The really *big* opportunities to improve energy
efficiency may require a shift in how we program
systems
–  This requires codesign to evalute the hardware and

new software together
–  HW/SW Interaction unknown (requires HW/SW

codesign)
If software CANNOT exploit these radical hardware
concepts (such as NTV), then it would be better to
not have done anything at all!

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 25

Bulk Synchronous Execution

f

f

f f

f/2

f/2

f/2

f/2

f/4

f/4

f/4 f/4

f

f

f f

f

f

f

f

f

f

f f

Fig: Shekhar Borkar

Assumptions of Uniformity is Breaking
(many new sources of heterogeneity)

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy

Bulk Synchronous Execution Model Asynchronous Execution Model

Sources of performance heterogeneity increasing
•  Heterogeneous architectures (accelerator)
•  Thermal throttling
•  Performance heterogeneity due to transient error recovery

Current Bulk Synchronous Model not up to task
•  Current focus is on removing sources of performance variation

(jitter), is increasingly impractical
•  Huge costs in power/complexity/performance to extend the life

of a purely bulk synchronous model

Embrace performance heterogeneity: Study use of asynchronous computational
models (e.g. SWARM, HPX, and other concepts from 1980s)

Conclusions on Heterogeneity

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07
1/
1/
19

92

1/
1/
19

96

1/
1/
20

00

1/
1/
20

04

1/
1/
20

08

1/
1/
20

12

1/
1/
20

16

1/
1/
20

20

1/
1/
20

24

En
er
gy

pe
rF

lo
p
(p
J)

Heavyweight Heavyweight Scaled Heavyweight Constant

Lightweight Lightweight Scaled Lightweight Constant

Heterogeneous Hetergeneous Scaled Historical

CMOS Projection Hi Perf CMOS Projection Low Power UHPC Goal

1/23/2013 Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 28

Hybrid Architectures:
Moving from side-show to necessity

Hybrid is the only
approach that
crosses the

exascale finish line

1/23/2013
Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy

29

Future Node Architecture (System on Chip)

Memory
Stacks

on package

Low
Capacity

High
Bandwidth

Fat Core
Latency
Optimized Memory

DRAM

Memory High Capacity
Low Bandwidth

NIC on Board

OpenSoC: Abstract Fabric
System-on-Chip (SoC) could revolutionize energy efficient computing

AXI
OpenSoC

FabricCPU(s)

HMC

AXI

AXI

CPU(s)

AXI CPU(s)

A
X
I

CPU(s)

AX
I

CPU(s)

A
X
I

AX
I

10G
bE

PCIe

22
November
2013

Lawrence Berkeley National Lab, Computer Architecture Lab 30

Seymour Cray 1977: “Don’t put
anything in to a supercomputer
that isn’t necessary.”

Mark Horowitz 2007: “Years of
research in low-power embedded
computing have shown only one
design technique to reduce
power: reduce waste.”

SoC Revolution enables us to
achieve goal of reducing waste
–  Enable us to include ONLY

what we need for HPC.
–  Tighter component

integration
–  Fewer losses for inter-chip

wiring for peripherals

Building an SoC (System on Chip) from IP Logic Blocks
Lego circuit blocks with a some extra integration and verification cost
Include only what you need (and no more).

31

Processor Core (ARM, Tensilica, MIPS deriv)
With extra “options” like DP FPU, ECC

OpenSoC Fabric (ARM or Arteris)

DDR memory controller (Denali /
Cadence, SiCreations)
+ Phy and Programmable PLL

PCIe Gen3 Root complex

Integrated FLASH Controller

10GigE or IB DDR 4x Channel

memctl

memctl
Memory

DRAM

Memory
DRAM P

C
Ie

FLA
S

H

ctl

IB
 or

G
igE

IB
 or

G
igE

Emerging hardware constraints are increasingly mismatched with
our current programming paradigm
•  Current emphasis is on preserving FLOPs
•  The real costs now are not FLOPs… it is data movement
•  Requires shift to a data-locality centric programming paradigm and hardware features

to support it

Technology Changes Fundamentally Disrupt our Programming
Environments
•  The programming environment and associated “abstract machine model” is a

reflection of the underlying machine architecture
•  Therefore, design decisions can have deep effect your entire programming

paradigm
•  The BIGGEST opportunities in energy efficiency and performance

improvements require HW and SW considered together (codesign)

Performance Portability Should be Top-Tier Metric for codesign
•  Know what to IGNORE, what to ABSTRACT, and what to make more EXPRESSIVE

Conclusions

The End
For more information go to

 http://www.cal-design.org/
 http://www.nersc.gov/
 http://crd.lbl.gov/

Data layout (currently, make it more expressive)
•  Need to support hierarchical data layout that closer matches architecture
•  Automated method to select optimal layout is elusive, but type-system can support minimally

invasive user selection of layout
Horizontal locality management (virtualize)
•  Flexibly use message queues and global address space
•  Give intelligent runtime tools to dynamically compute cost of data movement

Vertical data locality management (make more expressive)
•  Need good abstraction for software managed memory
•  Malleable memories (allow us to sit on fence while awaiting good abstraction)

Heterogeneity (virtualize)
•  Its going to be there whether you want it or not
•  Pushes us towards async model for computation (post-SPMD)
Parallelism (virtualize)
•  Need abstraction to virtualize # processors (but must be cognizant of layout)
•  For synchronous model (or sections of code) locality-aware iterators or loops enable implicit

binding of work to local data.
•  For async codes, need to go to functional model to get implicit parallelism
–  Helps with scheduling
–  Does not solve data layout problem

Bonus:

•  There is progress in Exascale with many projects now
focused and on their way, e.g. FastForward, Xstack, and Co-
Design Centers in the U.S.

•  HPC has moved to low power processing, and the processor
growth curves in energy-efficiency could get us in the range
of exascale feasibility

•  Memory and data movement are still more open challenges

•  Programming model needs to address heterogeneous,
massive parallel environment, as well as data locality

•  Exascale applications will be challenge just because their
sheer size and the memory limitations

Summary

Objective: Enable DOE scientists and engineers to use the most advanced
computational hardware and software for discovery science.

The Challenge of our Decade: Performance growth in fixed power budget
•  The challenge is as dramatic as transition from vector to MPP
•  This transition affects all computing for science from smallest to the largest scale
•  Fundamentally breaks our software infrastructure (need to re-architect)

Approach: Components of CoDesign Process
•  XStack: Translate emerging architectural trends into advanced software

technology (operating systems, communications libraries, programming systems)
•  Fast Forward: $60M public/private partnerships to accelerate development of

computing technologies to deliver 100x more usable operations per watt in 10 yrs
•  CoDesign Centers: Software Design Space Exploration, “proxy applications” and

application prototyping to facilitate codesign
•  Hardware Design Space Exploration: CAL hardware design space and “proxy

hardware” using architectural simulation and modeling to facilitate codesign

1/23/2013 Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 36

DOE Strategy for Exascale Computing
 Designing the computing environment for the future

The Power and Clock Inflection Point in 2004

0

1

10

100

1,000
1
9
75

1
9
80

1
9
85

1
9
90

1
9
95

2
0
00

2
0
05

2
0
10

2
0
15

2
0
20

W
at
ts
�p
e
r�S

q
u
ar
e
�cm

Historical�Single�Core Historical�MultiͲCore
ITRS�Hi�Perf

100W�light
bulb

Hot�Plate

Nuclear�Reactor

1.E+01

1.E+02

1.E+03

1.E+04

1
/1
/9
2

1
/1
/9
6

1
/1
/0
0

1
/1
/0
4

1
/1
/0
8

1
/1
/1
2

1
/1
/1
6

C
lo
ck
�(M

H
z)

Node�Processor�Clock�(MHz)�(H)
Node�Processor�Clock�(MHz)�(L)
Node�Processor�Clock�(MHz)�(M)
Acclerator�Core�Clock�(MHz)�(H)
Acclerator�Core�Clock�(MHz)�(L)
Acclerator�Core�Clock�(MHz)�(M)

Source: Kogge and Shalf, IEEE CISE

Power Efficiency has gone up significantly
in 2012

0

200

400

600

800

1000

1200

2008 2009 2010 2011 2012

Li
np

ac
k/

Po
w

er

[G
flo

ps
/k

W
]

TOP10

TOP50	

TOP500	

Data from: TOP500 November 2012

Most Power Efficient Architectures

Computer Rmax/
Power

Appro GreenBlade, Xeon 8C 2.6GHz, Infiniband FDR, Intel Xeon Phi 2,450
Cray XK7, Opteron 16C 2.1GHz, Gemini, NVIDIA Kepler 2,243
BlueGene/Q, Power BQC 16C 1.60 GHz, Custom 2,102
iDataPlex DX360M4, Xeon 8C 2.6GHz, Infiniband QDR, Intel Xeon Phi 1,935
RSC Tornado, Xeon 8C 2.9GHz, Infiniband FDR, Intel Xeon Phi 1,687
SGI Rackable, Xeon 8C 2.6GHz, Infiniband FDR, Intel Xeon Phi 1,613
Chundoong Cluster, Xeon 8C 2GHz, Infiniband QDR, AMD Radeon HD 1,467
Bullx B505, Xeon 6C 2.53GHz, Infiniband QDR, NVIDIA 2090 1,266
Intel Cluster, Xeon 8C 2.6GHz, Infiniband FDR, Intel Xeon Phi 1,265
Xtreme-X , Xeon 8C 2.6GHz, Infiniband QDR, NVIDIA 2090 1,050

[Tflops/MW] = [Mflops/Watt]

Power Efficiency over Time

0	

500	

1,000	

1,500	

2,000	

2,500	

3,000	

2008	
 2009	
 2010	
 2011	
 2012	

Li
np

ac
k/
Po

w
er
	
 	
 	

[G
flo

ps
/k
W
]	

TOP10	

TOP50	

TOP500	

Accelerator and BG

multicore

Data from: TOP500 November 2012

Power Efficiency over Time

0	

500	

1,000	

1,500	

2,000	

2,500	

3,000	

2008	
 2009	
 2010	
 2011	
 2012	

Li
np

ac
k/
Po

w
er
	
 	
 	

[G
flo

ps
/k
W
]	

TOP10	

TOP50	

TOP500	

0	

500	

1,000	

1,500	

2,000	

2,500	

3,000	

2008	
 2009	
 2010	
 2011	
 2012	

Li
np

ac
k/
Po

w
er
	
 	
 	

[G
flo

ps
/k
W
]	

TOP10	

TOP50	

TOP500	

One time
technology
improvement, not
a change in trend
rate

Data from: TOP500 November 2012

It’s the End of the World as We Know It!

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

01
/0
1/
96

01
/0
1/
00

01
/0
1/
04

01
/0
1/
08

01
/0
1/
12

Co
m
po

un
d
An

nu
al
Gr
ow

th
Ra

te
:C
AG

R

Rmax (Gflop/s) Total Cores

Ave Cycles/sec per core (Mhz) Mem/Core (GB)

Source: Kogge and Shalf, IEEE CISE 2013

Summary Trends

