BLUE WATERS SUSTAINED PETASCALE COMPUTING National Petascale Computing Facility

LIQUID-COOLED SYSTEMS COMMISSIONING **LESSONS LEARNED**

THOMAS DURBIN, P.E., LEED AP

November 15, 2013

LEED GOLD CERTIFIED

NPCF

- PEAK >3,500 TONS
- >95% LIQUID COOLING
- 72 XDP COOLING UNITS
- 13.34 PETAFLOPS
- 1.5 PETABYTES RAM
- 4,224 NVIDIA KEPLER GPUS
- >49,000 AMD CPUS • 405,248 CPU CORES
- 26,864 COMPUTE NODES
- 288 CRAY CABINETS

NC5A

 PROBLEM STATEMENT:
CONTROL OF CHILLED WATER FLOW FROM MULTIPLE SOURCES TO ONE LOAD WAS
DIFFICULT TO ACHIEVE BECAUSE OF VARYING
PRESSURES IN THE TWO SUPPLY PIPES.

NC5A

CONSEQUENCES

- WHEN CHILLED WATER FLOW TO THE LOAD IS COMPROMISED, THE HPC SYSTEM REACHES HIGH TEMPERATURE ALARM IN LESS THAN 2 MINUTES AND DEACTIVATES.
- IT TAKES SEVERAL HOURS TO REBOOT THE SYSTEM AND JOBS MUST BE RESTARTED.

INSE IN CREAT LAKES CONSORTIUM CRAATION

ROOT CAUSE

 DIFFERENCES IN SUPPLY PRESSURES WERE TOO LARGE WHEN THE CAMPUS SYSTEM PRESSURE DROPPED, CAUSING A DECREASE IN FLOW TO THE LOAD AND FLOW TO REVERSE IN THE CAMPUS SUPPLY PIPES.

CORRECTIVE ACTIONS

COORDINATE UTILITY OPERATIONS WITH CAMPUS UTILITY
PERSONNEL AND MODIFY THE CONTROLS PROGRAMMING

FORWARD ADOPTION

 INCORPORATED INTO SYSTEMATIC APPROACH FOR UNIVERSAL COMMISSIONING FOR LIQUID-COOLED SYSTEMS

QUESTIONS

THOMAS DURBIN, P.E., LEED AP 217-333-4024 tedurbin@illinois.edu