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• Programming Models are a Reflection of the Underlying 
Machine Architecture
– Express what is important for performance
– Hide complexity that is not consequential to performance

• Programming Models are Increasingly Mismatched with 
Underlying Hardware Architecture
– Changes in computer architecture trends/costs
– Performance and programmability consequences

• The reason for the mismatch is the increasingly power 
constrained nature of future machine architectures
– Peter Kogge described how data movement is biggest cost factor
– Programming environments and algorithm design is rapidly moving 

from conserving FLOPs to conserving data movement

• Recommendations on Reformulating Programming 
Environment together with Hardware Support for Efficiency
– One school of thought says we try to control energy states of HPC
– Alternative is to design to maximize data movement efficiency

Outline
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• Minimize the number of lines of code I have to change 
when we move to next version of a machine
– Evidence that current abstractions are broken are entirely related 

to effort required to move to each new machine
– Target is the FIRST DERIVATIVE of technology changes!!!

• What is changing the fastest (what do we want to make 
future pmodels less sensitive to)
– Insensitive to # cores (but unclear if as worried about # of nodes)
– Less sensitive to sources of of non‐uniformity (execution rates and 

heterogeneous core types)
– Memory capacity/compute ratio (strong’ish’ ‐ scaling)
– Data Movement Constraints

• Increasingly distance‐dependent cost of data movement
• Topological constraints (node‐scale & system‐wide)
• Expressed as NUMA domains (within node)

What are durable abstractions  (abstract machine model) for 
HIDING or MITIGATING these design trends? 

Goal for Programmers at All Levels
(NNSA Exascale Roadmapping Workshop in SF, 2011)
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What is an Abstract Machine Model?
Definition: An Abstract Machine model represents the 

machine attributes that will be important to 
reasoning about code performance

• Enables us to reason about how to map algorithm 
efficiently onto underlying machine architecture

• Enables us to reason about power/performance trade-offs 
for different algorithm or execution model choices

• Want model to be as simple as possible, but not neglect 
any aspects of the machine that are important for 
performance Has been relatively consistent in HPC for many years

Pax MPI



5

The Programming Model is a Reflection of the 
Underlying Abstract Machine Model

• Equal cost SMP/PRAM model
– No notion of non-local access
– int [nx][ny][nz];

• Cluster: Distributed memory model
– No unified memory
– int [localNX][localNY][localNZ];

• PGAS for horizontal locality
– Data is LOCAL or REMOTE
– shared [Horizontal] int [nx][ny][nz];

• HPGAS for vertical data movement
– Depth of hierarchy also matters now
– shared [Vertical][Horizontal] int

[x][y][z];?
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Parameterized Machine Model
(what do we need to reason about when designing a new code?)

Cores
•How Many
•Heterogeneous
•SIMD Width

Network on Chip (NoC)
•Are they equidistant or 
•Constrained Topology (2D)

On‐Chip Memory Hierarchy
•Automatic or Scratchpad?
•Memory coherency method?

Node Topology
•NUMA or Flat?
•Topology may be important
•Or perhaps just distance

Memory
•Nonvolatile / multi‐tiered?
•Intelligence in memory (or not)

Fault Model for Node
• FIT rates, Kinds of faults
• Granularity of faults/recovery

Interconnect
•Bandwidth/Latency/Overhead
•Topology

Primitives for data movement/sync
•Global Address Space or messaging?
•Synchronization primitives/Fences
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For each parameterized machine attribute, can 
• Ignore it: If ignoring it has no serious power/performance consequences
• Abstract it (virtualize): If it is well enough understood to support an automated 

mechanism to optimize layout or schedule
• This makes programmers life easier (one less thing to worry about)

• Expose it (unvirtualize): If there is not a clear automated way of make decisions
• Must involve the human/programmer in the process (make pmodel more expressive)
• Directives to control data movement or layout (for example)

Want model to be as simple as possible, but not neglect any 
aspects of the machine that are important for performance

Parameterized Machine Model 
(what do we need to reason about when designing a new code?)



Data Movement
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The problem with Wires: 
Energy to move data proportional to distance

• Cost to move a bit on copper wire:
– Power = bitrate * Length / cross-section-area

• Wire data capacity constant as feature size shrinks
• Cost to move bit proportional to distance
• ~1-5TByte/sec max feasible off-chip BW (10-20GHz/pin)
• Photonics is a wildcard

Copper requires to signal amplification
even for on‐chip connections 

Photonics requires no redrive 
and passive switch little power
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Data Movement Costs
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Energy Efficiency will require careful management of data locality

Important to know when you are on‐chip and when data is off‐chip!
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Future of On-Chip Architecture
(Nov 2009 DOE arch workshop)

• ~1000-10k simple cores
• 4-8 wide SIMD or VLIW bundles
• Either 4 or 50+ HW threads
• On-chip communication Fabric

– Low-degree topology for on-chip 
communication (torus or mesh)

– Can we scale cache-coherence?
– HW msg. passing
– Global (possibly nonCC memory)
– Shared register file (clusters)

• Off-chip communication fabric
– Integrated directly on an SoC
– Reduced component counts
– Coherent with TLB (no pinning)Scale‐out for Planar geometry



12

Cost of Data Movement

• Cost of moving long-distances on 
chip motivates clustering on-chip
– 1mm costs ~6pj (today & 2018)
– 20mm costs ~120 pj (today & 2018)
– FLOP costs ~100pj today
– FLOP costs ~25pj in 2018

• Different Architectural Directions
– GPU: WARPs of hardware threads 

clustered around shared register file
– CMP: limited area cache-coherence
– CMT: hardware multithreading 

clusters



Data Locality Management
Vertical Locality Management

(spatio-temporal optimization)
Horizontal Locality Management

(topology optimization)

13
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• Old Mental Model -- Reduce FLOPs
– FLOPS used to be the most expensive (conserve what is expensive)
– Concern about sustained-to-peak performance (% of peak flop rate)

• Technology Trends (are mismatched  with current pmodel)
– Cost of data movement rising faster than cost of a flop. (IKEA FLOPs)
– New costs center around vertical and horizontal data movement

• New Approaches need CoDesign of Hardware/Software 
mechanisms for a complete programming environment
– Communication Avoiding Algorithms and Average 

Communication Distance Model
– More expressive type-systems to express data layouts

• Enables compilers and runtimes info to reason about data layout
– Functional Semantics to simplify automated data movement

• Make data volume and movement trivial to identify and compute
• Make tedious CUDA_copy and ACC data movement directives go away

Shifting our Programming Paradigm to Reflect 
Emerging Design Constraints



Data Locality Management
Vertical Locality Management

(spatio-temporal optimization)
Horizontal Locality Management

(topology optimization)
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Hardware/Software for Managing 
Vertical Data Locality
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Loop Fusion To Reduce Memory Bandwidth
“use cache as bandwidth filter”

Baseline
2.9 GB/sweep
1.78 Bytes/Flop

Simple Fusion
1.6 GB/sweep (–46%)

0.96 Bytes/Flop

Aggressive
Fusion

0.48 GB/sweep (–84%)
0.29 Bytes/Flop

18

Note: This is not traditional fusion.  
Current compilers models are not 
up to this task.

But how much is it worth to fix 
them?
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• If not enough registers available to hold state, 
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x86 has 16 integer and
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• Aggressive Fusion is essential to lower memory bandwidth 
requirements
– But to get the advantage need large L1 cache (would need to be 

scratchpad to be feasible)
– Also requires larger register file
– And requires new programming paradigm to enable aggressive fusion 

(functional semantics or other hints to facilitate compiler analysis)
• Benchmarking on current architectures would have missed this 

opportunity
– Requires predictive modeling and architectural simulation 
– This is the center of codesign

• Many of the most valuable hardware opportunities identified by 
codesign will have major impact on our programming 
paradigm!
– Its not just about transforming code and algorithms
– Choices affect our entire paradigm for programming these systems!
– Must think deeper about ramifications to programming ecosystem (just 

as we did in the transition from vec to MPI)

Conclusions on Vertical Locality Management



Software/Hardware Mechanisms for 
Managing Horizontal Data Locality
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Problems with Existing Abstractions for 
Expressing Locality

• Our current programming models assume all 
communicating elements are equidistant (PRAM) 
– OpenMP, and MPI each assume flat machine at their level of parallelism

• But the machine is not flat!!!
– Lose performance because expectation 

and reality are mismatched
– Pmodel does not match 

underlying machine model!!

• What is wrong with Flat MPI?
– 10x higher bandwidth between cores on chip
– 10x lower latency between cores on chip
– If you pretend that every core is a peer (each is just a generic MPI rank) 

you are leaving a lot of performance on the table
– You cannot domain-decompose things forever
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Comm Perf of 3D FFT on Franklin
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• MPI+OMP Hybrid recognizes huge 

cost for going off-chip 
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communication performance
– Enables node to send larger 

messages between nodes
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communications efficiency

Good News!

Benefits of expressing
Two‐levels of locality
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• But OMP offers no 
management of data locality
– Huge performance penalty for ignoring 

NUMA effects
– Then programmer responsible for 

matching up computation with data 
layout!! (UGH!)

– Makes library writing difficult and Makes 
AMR nearly impossible!

Bad News!
It’s the Revenge of 
the SGI Origin2000
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Expressing Hierarchical Layout
• Hierarchical layout statements

– Express mapping of “natural” enumeration of an array to the 
unnatural system memory hierarchy

– Maintain unified “global” index space for arrays (A[x][y][z])
– Support mapping to complex address spaces
– Convenient for programmers

• Iteration expressions more powerful when they 
bind to data locality instead of threadnumber
– instead of upc_forall(;;;<threadnumber>) 
– Use upc_forall(;;;<implicitly where Array A is local>)

upc_forall(i=0;i<NX;i++;A) 

C[j]+=A[j]*B[i][j]);

25
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Hierarchical Layout Statements
• Building up a hierarchical layout

– Layout block coreblk {blockx,blocky};
– Layout block nodeblk {nnx,nny,nnz};
– Layout hierarchy myheirarchy {coreblk,nodeblk};
– Shared myhierarchy double a[nx][ny][nz];

26

• Then use data‐localized parallel loop
doall_at(i=0;i<nx;i++;a){

doall_at(j=0;j<ny;j++;a){
doall_at(k=0;k<nz;k++;a){

a[i][j][k]=C*a[i+1]…>
• And if layout changes, this loop remains the same

Satisfies the request of the application developers
(minimize the amount of code that changes)
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Conclusions on Data Layout
• Failure to express data locality has substantial cost in 

application performance
– Compiler and runtime cannot figure this out on its own given limited 

information current languages and programming models provide

• Hierarchical data layout statements offer better 
expressiveness
– Must be hierarchical
– Must be multidimensional
– Support composable build-up of layout description

• Data-centric parallel expressions offer better 
virtualization of # processors/threads
– Don’t execute based on “thread number”
– Parallelize & execute based on data locality
– Enables layout to be specified in machine-dependent manner 

without changing execution

27



Interconnects

Technology Trends and Effects on 
Application Performance

28
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Scalable Interconnects

• Can’t afford to continue with 
Fat-trees or other Fully-
Connected Networks (FCNs)

• But will Ultrascale applications
perform well on lower degree 
networks like meshes, 
hypercubes or torii. Or high-
radix routers/tapered dragonfly?

• How can we wire up a custom 
interconnect topology for each 
application?
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Interconnect Design Considerations 
for Message Passing Applications

• Application studies provide insight to 
requirements for Interconnects (both 
on‐chip and off‐chip)
– On‐chip interconnect is 2D planar 

(crossbar won’t scale!)
– Sparse connectivity for most apps.; 

crossbar is overkill
– No single best topology
– Most point‐to‐point message exhibit 

sparse topology + often bandwidth 
bound

– Collectives tiny and primarily latency 
bound

• Ultimately, need to be aware of the on‐
chip interconnect topology in addition 
to the off‐chip topology
– Adaptive topology interconnects (HFAST)
– Intelligent task migration?
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Interconnect Design Considerations 
for Message Passing Applications

• Application studies provide insight to 
requirements for Interconnects (both 
on‐chip and off‐chip)
– On‐chip interconnect is 2D planar 

(crossbar won’t scale!)
– Sparse connectivity for most apps.; 

crossbar is overkill
– No single best topology
– Most point‐to‐point message exhibit 

sparse topology + often bandwidth 
bound

– Collectives tiny and primarily latency 
bound

• Ultimately, need to be aware of the on‐
chip interconnect topology in addition 
to the off‐chip topology
– Adaptive topology interconnects (HFAST)
– Intelligent task migration?

Opportunity



32

CCSM Performance Variability
(trials of embedding communication topologies)

• Result of 311 runs of the coupled climate model showing model 
throughput as a function of completion date.

Data from Harvey Wasserman

COV ~9%
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Node placement of a fast, average and slow run

Fast run: 940 seconds Slow run: 2462 secondsAverage run: 1100 seconds

Y=8

X=17

Z=24

from Katie Antypas
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Node placement of a fast, average and slow run

Fast run: 940 seconds Slow run: 2462 secondsAverage run: 1100 seconds

Y=8

X=17

Z=24

from Katie Antypas

Failure to exploit 
opportunity

(when virtualization of 
topology goes wrong)
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Topology Optimization
(turning Fat-trees into Fit-trees)

• A Fit-tree uses OCS to 
prune unused (or 
infrequently used) 
connections in a Fat-Tree

• Tailor the interconnect 
bandwidth taper to match 
application data flows
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• Huge opportunity for communication topology 
optimization to improve performance
– Runtime information gathering for active task migration, circuit 

switching
– Use intelligent runtime to remap for locality or to use circuit 

switching to optimize switch topology

• Current Programming Models do not provide facility 
to express topology
– OpenMP topology un-aware
– MPI has topology directives (tedious, and rarely implemented or 

used)
– Results in substantial measurable losses in performance 

(within node/OpenMP and inter-node/MPI)

Need to provide the compiler, runtime & resource 
manager more information about topology

Conclusions on Interconnect



Heterogeneity / Inhomogeneity
async pmodels?
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Assumptions of Uniformity is Breaking
(many new sources of heterogeneity)

• Heterogeneous compute engines (hybrid/GPU computing)
• Irregular algorithms
• Fine grained power mgmt. makes homogeneous cores look 

heterogeneous
– thermal throttling on Sandybridge – no longer guarantee deterministic clock rate

• Nonuniformities in process technology creates non-uniform 
operating characteristics for cores on a CMP

• Fault resilience introduces inhomogeneity in execution rates
– error correction is not instantaneous
– And this will get WAY worse if we move towards software-based resilience
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• Sources of performance heterogeneity increasing 
(especially as we try to extract more energy efficiency)
– Heterogeneous architectures (accelerator)
– Thermal throttling
– Near Threshold: increased heterogeneity for clock rates
– Performance heterogeneity due to transient error recovery

• Current Bulk Synchronous Model not up to task
– Current focus is on removing sources of performance variation 

(jitter), is increasingly impractical
– Huge costs in power/complexity/performance to extend the life of a 

purely bulk synchronous model

Embrace performance heterogeneity:  Study use of 
asynchronous computational models (e.g. 
SWARM, HPX, and other concepts from 1980s)

Conclusions on Heterogeneity



Why Wait for Exascale
everything is breaking NOW!
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• Emerging hardware constraints are increasingly mismatched 
with our current programming paradigm

– Current emphasis is on preserving FLOPs
– The real costs now are not FLOPs… it is data movement
– Requires shift to a data-locality centric programming paradigm and hardware 

features to support it

• Codesign is NOT just design optimization
– The programming environment and associated “abstract machine 

model” is a reflection of the underlying machine architecture 
– Therefore, design decisions can have deep effect your entire 

programming paradigm
– Hardware/Software Codesign MUST consider ergonomic decisions 

about your programming environment together with performance
• Performance Portability Should be Top-Tier Metric for 

CoDesign process
– Know what to IGNORE, what to ABSTRACT, and what to make more 

EXPRESSIVE

Conclusions
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Programming model IS, and SHOULD BE a proper 
reflection of the underlying machine architecture

Machine attributes are parameterized
–Changes with each generation of machine and between different vendor 
implementations
–Pmodel should target the parameterized attributes

For each parameterized machine attribute
• Ignore it: If ignoring it has no serious power/performance 

consequences
• Abstract it (virtualize): If it is well enough understood to support an 

automated mechanism to optimize layout or schedule
• Expose it (unvirtualize): If there is not a clear automated way of 

make decisions

Remember the Abstract 
Machine Model
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• Data layout (currently, make it more expressive)
– Need to support hierarchical data layout that closer matches architecture
– Automated method to select optimal layout is elusive, but type-system can 

support minimally invasive user selection of layout
• Horizontal locality management (virtualize)

– Flexibly use message queues and global address space
– Give intelligent runtime tools to dynamically compute cost of data movement

• Vertical data locality management (make more expressive)
– Need good abstraction for software managed memory
– Malleable memories (allow us to sit on fence while awaiting good abstraction)

• Heterogeneity (virtualize)
– Its going to be there whether you want it or not
– Pushes us towards async model for computation (post-SPMD)

• Parallelism (virtualize)
– Need abstraction to virtualize # processors (but must be cognizant of layout)
– For synchronous model (or sections of code) locality-aware iterators or 

loops enable implicit binding of work to local data.
– For async codes, need to go to functional model to get implicit parallelism

• Helps with scheduling
• Does not solve data layout problem

Recommendations


