Lawrence Livermore National Laboratory (LLNL)
High Performance Computing (HPC)
Sustainability Master Plan – Power Management
SC11 – November 14, 2011

Anna Maria Bailey, PE
Directorate ADFM and ASC Program Facility Manager

Computation Directorate
Lawrence Livermore National Laboratory

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 • LLNL-PRES-457823
HPC at LLNL strives to reduce energy consumption and ultimately reduce operating costs

- Energy conservation is critical to improve efficiencies and reduce operational costs
 - Operational efficiencies are vital to future of HPC - Exascale Computing

- Executive Order DOE 430.2B
 - Reduce energy intensity 30% by 2015 from baseline (FY03)

- Address High Performance Computing (HPC) capabilities and gaps as well as energy impacts site wide

- Developed HPC Sustainability Master Plan to feed into overall LLNL Sustainability Program
HPC Sustainability Master Plan Core Competencies

Drive to Energy Management

- Sustainable HPC Solutions
- Benchmarking
- Computation Fluid Dynamics (CFD)
- Leverage Existing HPC Capabilities
- LEED Certifications
- Power Management
- Innovative Electrical Distribution
- Liquid Cooling
- Free Cooling
- HPC Capability Gap Analysis
- HPC Platform Power Budgets

HPC Sustainability Master Plan

Computation Directorate
Power management is critical but challenging to implement

- Numerous data streams
- Need to aggregate data into single source and view on common dashboard
- Determining what data is significant
- Unable to correlate events from various sources
 - Different timestamps and formats
Power Management: Implement centralized system of real time data from the rack to the entire site

Create an operational, event, and real-time data management infrastructure of all external and internal data sources

Data Sources
- Rack, Equipment, Metering, Building Management, Utility

Interfaces
- Hundreds of Real Time Data Streams

Manage
- Gather and Evaluate Large Amounts of Data

Analyze
- Convert Real Time Data

Notify
- Centralized Event Notification

Visualize
- View Data and Reports

Goal = Lower power utilization and achieve Exascale
Power Management: Challenges

- Understanding how different types of hardware and software impact power utilization
- Correlating multiple types of data sources
- Coordinating with multiple owners of the data
- Accessing the data
- Selecting the best interface
- Comparing and viewing the data on a common platform
- Creating various dashboards
Power Management:
Current data sources are spread across LLNL
Overall Management Architecture

Computation Directorate
Understanding entire load flow will be crucial for Exascale
- Coordinate future data intensive runs with entire site operations

Instantaneous electrical site information
- MW
- MVAR
- Power Factor
HPC Power Management System - LLNL Electrical Distribution

- 115kV Distribution
 - WAPA and PG&E Load Flow
- 13.8kV Distribution Load Flow at Load Grid Switchgear (LGS)
 - LGS-14
 - LGS-15
 - LGS-19
 - LGS-37
 - LGS-42
 - LGS-45
 - LGS-57
- LGS-37 Example of Load Flow
 - MWs for the entire switchgear and each feeder
- 12 hour window illustrated
 - Window can be modified for different scales
- LGS-37 Feeder 3708 Example of Load Flow
 - MW
 - MVAR
 - Phase Amps

- Trending historical data will provide the ability to determine system capabilities
HPC Power Management System - B453 TSF Load Graphs
HPC Power Management System - B453 1st Level Machine Room

- Switchgear interface for computational load
- Select #2541A
Phase Data
- Voltage
- Current
- VA
- Watts
- VAR

Total Instantaneous Watts, VARs and VA
HPC Power Management System - B453 Switchboard 2541A
Machine interface for computational load
Select Dawn
HPC Power Management System - B453 Dawn Platform

Dawn Cluster Aggregate Watt Hour Pulse

Time Range Setting

- **Start Date:** 10/5/2011 8:15:00 AM
- **End Date:** 11/4/2011 8:15:00 AM
- **Time Range:** 30 Day(s)

Statistics

- **Minimum:** 109440 Wh
- **Average:** 206472 Wh
- **Maximum:** 430140 Wh
- **Total:** 1858248 Wh
Key to implement more energy efficient mechanical solutions through historical trending of environmental conditions

- Instantaneous Environmental Conditions
 - Outside Temperature
 - Humidity
 - Wind Speed
 - Precipitation
HPC Power Management System - Condenser Water Plant

- **Equipment Status**
- **Environmental Conditions**
 - Supply Temperature
 - Return Temperature
 - PH
 - Conductivity
HPC Power Management System - Chilled Water Plant

- Equipment Status
- Environmental Conditions
 - Supply Temperature
 - Return Temperature
 - Supply Flow
 - Return Flow
 - Supply Pressure
 - Return Pressure
Test Case - Analyzing Power of a HPC Run

- Power profile
 - 1 minute vs. 1 second power measurements
 - Provided case study information for the EEHPC System Metrics analysis
Path Forward

- Review the usefulness of the data streams
- Continue to evaluate the data through test cases
- Validate and improve the use of the dashboards
Questions

Anna Maria Bailey, PE
Lawrence Livermore National Laboratory
7000 East Ave PO Box 808 L-554
Livermore, CA 94550

Phone - (925)423-1288
Email - bailey31@llnl.gov
Back-up Slides

Anna Maria Bailey, PE
Lawrence Livermore National Laboratory
7000 East Ave PO Box 808 L-554
Livermore, CA 94550

Phone - (925)423-1288
Email - bailey31@llnl.gov
LLNL’s Sustainability Leadership Strategy

- Developed a Strategic Plan
 - Sustainability is integral to the Laboratory’s mission success

- Developed key points of integration
 - Facilities and infrastructure management
 - Mission and program engagement
 - Workforce involvement
 - External stakeholder relations.

- Creating synergy to foster sustainability and mission success

- Integrating a process for the entire organization
Sustainability Program Vision at LLNL

- Create governance process
 - Sustainability Advisory Board (SAB) and Sustainability Working Group (SWG)
- Leverage current successes
- Track metrics
- Communicate strategies and successes to employees
- Outreach programs to the community
HPC’s goal is to develop efficiencies across TSF complex “Turn Megawatts into PetaFLOPS and ExaFLOPS”

- Highlights:
 - Capitalized on flexible and scalable infrastructure of the facility and computational platforms
 - Performed extensive benchmarking
 - Prepared comprehensive computational fluid dynamics (CFD)
 - Improved operational efficiencies
 - DOE FEMP 2009 Energy Award
 - B-453 LEED Gold Certified Awarded on December 2009 and B-451 LEED Silver April 2011