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The changing nature of research and scholarship
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Large Synoptic Survey Telescope (LSST)

Structure
* 8.4 meter telescope with 3.5 degree FOV
« 3.2 gigapixel camera

 Construction underway in Chile

Science Large ynopic urvey Te/esope

« Dark matter/energy and gravitational lensing
« Quter solar system and NEOs
» Milky Way structure and evolution

Streamed foranalysis and access

« ~15 TB/night and 200K images/year (1.3 PB)
* 60 second trigger for transient events

« 60 PB raw and 15 PB catalog (over 10 years)
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Oura Ring

Fverything gets smart at the edge ...

Oxford Nanopore
Mobile DNA sequencer
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Changmg the game

MIT
Technology
Review

Artificial Intelligence

How AlphaZero has
rewritten the rules of
game play onits own

IBM’s DeepBlue chess machine
* Programmed for chess

Google's AlphaGo % &

» Generalized reinforcement learning AIphaStar and Starcraft I
Google's AlphaZero

» Generative adversarial network

Al just won a poker tournament L 22

against professional players ..,.-.f‘-b ._',;.,
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Mastering the game of Go with deep
neural networks and tree search

nother gaming victory over humans by winning a 20-day poker tournament. The Al, calle David Silver's, Aja H , Chris J. Maddison', Arthur Guez’, Laurent Sifre?, George van den Dri h
f the world’s best Heads-Up No-Limit Texas Hold ‘Em poker players at a Pennsyl ik
ur of the world’s best Heads-Up No-Limit Texas Hold ‘Em poker players at a Pennsylvania casinc Tulian Sc hmt\ et uaxlolg is mtonoélou Verta Parmeershelvamt. Marc T totl. Sander Diele Do Coenil.

John Nham?, Nal Kalchbrenner?, Ilya Sutskever?, Timothy Lillicrap*, Madeleine Leach?, Koray Kavukcuoghu!,
Thore Graepel® & Demis Hass abis!




Some panel framing questions

How do we best meet soft real-time constraints for streaming data, subject
to energy, communication, operation and cost constraints?

What advances have we seen in orchestration capabilities for real-time
considerations?

What Al techniques are relevant addressing real-time data constraints?

Can we use Al for performance and efficiency tuning of both HPC
applications and the data center?
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Some additional guestions

What are the issues of greatest interest for big data management of HPC
system monitoring data?

What applications are emerging that have the potential for strong societal
Impact?

How should HPC systems and data centers evolve to support Al applications?

Are Al specific hardware accelerators the only future?
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Autonomous goal seeking entities, aka panel members

Rosa Badia
Barcelona Supercomputing Center

Charlie Catlett
Argonne National Laboratory

Ewa Deelman
USC/Information Sciences Institute

Greg Koenig
KPMG

Satoshi Matsuoka
RIKEN Center for Computational Science T Covensiry
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PyCOMPSs approach
towards computing
under constraints

Rosa M. Badia

Workflows & Distributed Computing Group

HPC Big Data and Al: Computing under Constraints



Programming with PyCOMPSs/COMPSs  a pg\\

* Sequential programming, parallel execution

* General purpose programming language + annotations/hints
* To identify tasks and directionality of data

* Builds a task graph at runtime that express potential
concurrency

e Offers a shared memory illusion to
applications in a distributed system

* The application can address larger data
storage space: support for Big Data apps

* Support for persistent storage
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* Agnostic of computing
platform

e Enabled by the runtime
for clusters, clouds and

Ow @ vrhasing
container managed clusters © Lreimpuaion @ mputation @ ouaity ierig
. llllllll ‘ Post-imputation @ Data merging
Barcelona ] @© [ rittering (&) Summary statistics
Supercompuﬂng ~ and tophits results
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What is a PyCOMPSs/COMPSs task?

» Tasks can be sequential, multi-threaded, multi-node

Tasks may have constraints/requirements

@implement (source class="myclass”, method="myfunc”)

TaSkS may have mU|t|p|e VEIsIons @Qconstraint (MemorySize=1.0, ProcessorType ="ARM”)

@task (c=INOUT)
def myfunc other (a, b, c):

Tasks may read/write streamed data

@Qconstraint (computingUnits= "248")

@mpi (runner="mpirun", computingNodes= "“16"”, ...)
@task (returns=int, stdOutFile=FILE OUT STDOUT, ...)
def nems (stdOutFile, stdErrFile) :

pass

@task (£ds=STREAM OUT)
def sensor (fds):
while not end():
data = get data from sensor ()

Barcelona f.write (data)

Supercomputing

Center f.flush{()

Centro Nacional de Supercomputacién 1 2

fds.close ()

Hybrid Task Flows and Data Flows:
new types of pipelines



Use case: Continuous data generation and analytics

* Sample case: Sensor/instrument generating streamed data to be processed by some analytics

Sensor/instrument

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacién
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Task groups and timeouts

Qtask (file path=FILE IN, time out=200)
* Timeouts can be defined for each tasks def time_out_task (file_path):

e Tasks can raise exceptions

@task (file path=FILE INOUT)
def comp task(file path):

raise COMPSsException ("Exception raised")

* Combined with groups of tasks enables e
ry:
to cancel the group of ta;ks on the with TaskGroup (' failedGroup'):
occurrence of an exception long task (file name)
. . long task(file name)
* Can be combined with streamed data executed task(file name)
to dynamically make decisions comp task (file name)

. . except COMPSsException:
depending on the actual behavior Sy T P

Barcelona write two (flle name)

Supercomputing . - . -

Center write two(file name)

Centro Nacional de Supercomputacién — — 1 4



COMPSs runtime: Static scheduling / dynamic scheduling

PyCOMPSs/COMPSs applications executed in distributed mode following the master-worker paradigm
e Description of computational infrastructure in an XML file

Sequential execution starts in master node and tasks are offloaded to worker nodes

All data scheduling decisions and data transfers are performed by the runtime

Static scheduling can help in the presence of real-time constraints Computing infrastructure
Task Dependecy Graph

Annotated jaaasadd hEnunnIN
python code \ t)

I

LT
-
Phasing

filtering
Filtering

Python

binding

Resource Mgmt.
Files,
Task Execution § objects
Data Mgmt. -

COMPSs
Runtime

Barcelona _ Task

Supercomputing g 1
Cotar Analysis
Centro Nacional de Supercomputacién

Scheduling
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COMPSs runtime: support for elasticity

* Possibility to adapt the computing J
infrastructure depending on the
actual workload
* Now also for cloud, also SLURM
managed systems
* Feature that contributes to a more o w
effective use of resources ey sin e
Initial SLURM Job X
e Current elasticity policy is based on R, SRV Job Y
COSt Or time gfﬁg/:% a’fssv‘g Compute Node N
* Can be extended to be based on - @@
real-time constraints —
Request for a new node
SLURM creates

Update original job the new job

Barcelona
Supercomputing
Center

Centro Nacional de Supercomputacion SLURM Manager
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PyCOMPSs/COMPSs ambition

@

Complex infrastructures and applications

Holistic approach where both data and computing are
integrated in a single flow built on simple, high-level
interfaces

* Integration of computational
workloads, with machine
learning and data analytics

* Intelligent runtime that can make
scheduling and allocation,
data-transfer, and other decisions
New applications with social impact
* Digital twins
* Urgent computing
* Personalized medicine and medical Q

NEW Pi3 B+

software platforms
* Precision agriculture

Barcelona o
Supercomputing Rca=oy
Center AT
Centro Nacional de Supercomputacién -

Sensors,
/. Instruments
Edge devices

‘7}75‘\‘#.\‘. -
| Rl &%\WXSQ
{'(cﬁ?’.?m "‘Ef(@f"‘ }A‘EJ

Vo7 i
(\‘ ((wmxw/annﬂﬂm\\‘}\\wa!@
/t “

-4

‘; B

Cloud HPC
Exascale computing
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Thank you

support-compss@bsc.es

rosa.m.badia@bsc.es




Big data behind the big data behind the big data

.Extensive instrumentation, monitoring and control of
hinh-nerformance Compuung systems
and their data-centers is the big data behind big data....” Charlie Catlett

Senior Computer Scientist
University of Chicago and
Argonne National Laboratory

November 2019
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Making data available... but what about remote sources?

Portals:
Data
Discovery

Download: Scientific
Analysis

v
Internet
Open /
Free Data
Mt
. Toolsand |- Real-Time Access:
Tutorials [ New Applications

Why not ¢ Insufficient (or expensive) bandwidth
stream °* Privacy and ethics
everything all ¢ Software-defined sensors
the time? °* Real-time adaptive sensing and/or actuation

.\

ﬁi‘-’} CHICAGO NATIONAL LABORATORY

£ - Northwestern
CZ7 University




Software-Defined Sensors

Plant Species Pedestrian Flow

Raw data

Argonne°

NATIONAL LABORATORY

Adaptive control .
P == ‘ Triggers

FIELD SITES

Traffic Flow Wildlife

Autonomous Adaptive Sensing

- Northwestern
= University

.\

&ii CHICAGO NATIONAL LABORATORY

Pete Beckman, Charlie Catlett (ANL)



Software Deflned Sensors Trafflc and Pedestrlan Flows

Northwestern F=73 THE UNIVERSITY OF Argon ne °

University W/ CHICAGO NATIONAL LABORATORY

Nicola Ferrier, Songha Park, Yeongho Kim (ANL)



Leadership |
Team

, SAGE

A Software-Defined Sensor Network

ugene Kelly

www.sagecontinuum.org

Research cyberinfrastructure driven by
questions related to understanding the
resilience of our nation at multiple
spatial and temporal scales—from
extreme weather affecting food and
water supplies, to gentrification
impacting

neighborhood cohesion, to
urbanization disrupting
ecological diversity.

Scott Collis

Triggered Computation,
Deep Learning Training

SAGE is funded by the National Science

Foundation’s Mid-Scale Research

Infrastructure program. SAGE is led by

Northwestern University with partners at the

University of Chicago, Argonne National ;

Laboratory, Colorado State University, Jim Olds
University of California-San Diego, Northern
lllinois University, George Mason University,
University of Utah, DePaul University,
Lincoln Park Zoo Urban Wildlife Initiative,
and over 20 collaborating universities
arotind the world

LID\A/TDC

Stacie iIIas

Pete Beckman

Valerie Taylor

Dan Reed

Irene Qualters



School of Engineering
Information Sciences Institute

University of Southern California,
Information Sciences Institute

Can we use Al for performance and
efficiency tuning on both HPC
applications and the data-center?

SC’19 HPC Big Data and Al: Computing under Constraints
Denver, CO, November 20, 2019
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USC Viterbi

School of Engineering
Information Sciences Institute

Scientific Workflow Operate Across CI

Remote instrument facilities:

Instrument data raw data source and acquisition

Workflow data
transfer tasks

Computer for local
processing/filtering

Pre-processing

and calibration High-speed data transfer

workflow facilities: ESnet, DTN
4 )
000
Analysis and : 5 )
S;I'Vng:l:gw Compute clusters: data Storage Supercomputers: analysis,
L ) reduction, pre-processing modeling and simulation

O O O Visualization, steering and

data distribition tasks Visualization resources and distributed data stores:

visualization, steering, data sharing, distribution
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USCViterbi
School of Engineering

Automating Complex Workflow Execution

ation Sciences Institute

Resource discovery
Mapping tasks to resources

Manage data staging in and out

Automate execution of complex task graphs

Automate error/anomaly detection and recovery

Automate performance and reliability optimizations




Workflow Executions Generate Big Dato

USC Viterbi

School of Engineering
Information Sciences Institute

Workflow
Management System

Workflow-lewvel
monitoring
o ] mionitoing
Application-level
provenance data -
compute, 10, network
usage, performance data _ -

Infrastructure-level data -
T resource envelope of workflow
execution; performance metrics

I Task-level mnnit::rrina I for middlesware and infrastructure

| Middleware

| Storage, Network i

HTCondor, GRAM

PBS, Slurm

GridFTP, IRODS, Ej
hitp, scp

Compute Nodes

Production Cl resources

Training of
ML models
. / ortine
#= and online
wnﬂ-:ﬁnw ML
logs
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School of Engineering
Information Sciences Institute

1fe

Al for Science Process Automation

~
e Fully autonomous workflow that builds up the Cl to

Cl operate an instrument and conducts the experiment
generation Y

e Fully autonomous workflow that discovers the needed )
Data instruments, services, data, composes them, conducts
Generation the experiment )

e Fully autonomous workflow that builds an instrument,
discovers the needed services, data, composes them,

Science ]
seneration conducts the experiment p




USC Viterbi
School of Engineerin

“ngineering
Information Sciences Institute

How to discern truthe

Al that “Yknows” what a galaxy should look like
transforms a fuzzy image (left) into a crisp one (right).  ,/Z_ . . \

networks

Generator: makes up
images

Discriminator tries to identify
manipulations

Generator gets better

Thousands of real images of
galaxies arfificially degraded

\_

PHOTOS (LEFT TO RIGHT): SDSS AND CE ZHANG (ETHZ) (CC-BY); KEVIN SCHAWINSKI/ETH ZURICH/INSTITUTE FOR ASTRONOMY



https://creativecommons.org/licenses/by/4.0/

f \ USC Viterbi
School of Engineering:
Information Sciences Institute
0

Increased use of ”

. PR rust: How do you know that what we
OUTOmOTIOﬂ Ond > observe is real?
ML presents a new
set of challenges

\_ J

Delivering usable systems s
hard, decreases usabillity,

increases risk, decreases o
reliabilify o Reproducibility

Transparency

Understanding




Can Al fake over scientific research?e

1. Explore the scientific literature
Find the most relevant papers in a sea of millions,
track new topics as they emerge.

Semantic Scholar

A search engine that
extracts not just words
from papers, but graphs
and “influential” citations.

Iris.Al

Abrowsing tool for exploring
scientific papers by the
concepts that link them.

Science

2. Design experiments

Find the right trade-off between exploration of new
ground and exploitation of well-trodden phenomena.

Zymergen

A company with an Al
that tracks thousands of
variables while tweaking
microbe genomes (see
main story, p. 18).

~

3. Run experiment

Keep track of thousands of tiny tubes, molecules,
and cells, minimizing the imprecision and mistakes
that ruin careers.

NEWS

The cyberscientist

John Bohannon
+ See all authors and affiliations

Transcriptic,

Emerald Cloud Lab
Cloud-based robotic
laboratories for remotely
doing automated
molecular and cellular
biology experiments.

<

Science 07 Jul 2017:
Vol. 357, Issue 6346, pp. 18-21
DOI: 10.1126/science.357.6346.18

J

/ 4. Interpret data

Make sense of the flood of genetic and biochemical
results that now flow from biological experiments.

&y

Nutonian

A software platform
that ingests very large
data sets and spits out
a mathematical theory

in the data.

\_

that explains the patterns

5. Write scientific paper

But even writing papers can be enhanced with software
that can read the draft of your paper.

Citeomatic

A free online tool that
reads your paper and
predicts what citations
are missing.

~

So far the closest thing to a paper-writing Al is a postdoc.

So what will be the role of the
humane

How do we re-invent ourselves in the
era of automation?

How will being a scientist differ in the

futuree

How do we create new
human/machine interactions
(intentions/expectations/level of
trust)¢




HPC Big Data and Al:
Computing Under Constraints

SC19 Panel Discussion
Denver, Colorado — November 22, 2019

Gregory A. Koenig (koenig@acm.org)




Resources that might be constrained

me  Computational Resources

e Number of CPU cores
e Memory
e Communication bandwidth

— Data Resources

e Limitations on the amount and/or quality of input data
e Limitations on data motion

e | iMe Resources

¢ Deadline to reach a solution
e Communication latency

aame  Power/Energy Resources

e Limitations on the maximum total instantaneous power draw
e Constraints on the total energy available during some period of time (e.g., one day)




Al techniques




Al techniques

e Scientific Simulation
*  Computation constraints
* Time constraints
. Data constraints

* Monte Carlo and others
*  Computational constraints

Simulation

* Statistical Methods
*  Data constraints (training)
* Deep Networks

*  Data constraints (training)
*  Computational constraints

Machine
Learning

Mathematical
Optimization

 Exact Solvers
. Time constraints

* Metaheuristics
. Time constraints
*  Computational constraints




e Statistical Methods

*  Data constraints (training)
* Deep Networks

/ \l te C h n I u e S ¢  Data constraints (training)
*  Computational constraints

Machine

* ML can give predictive Learning
insights about a simulation

* Physics-informed ML

* Simulation could be used
to produce training data

Scientific Simulation

Computation constraints Simulation
Time constraints
v tDaéa Ccins”a"(‘jts ” * Optimization of a
onte Cario ana others . . .
) ) simulation’s input
Computational constraints
parameters

* Optimal real-time
computation steering

DNNSs are optimization
based (minimize loss
function)

ML approaches to guide
Metaheuristic searches

Mathematical * Exact Solvers
Optimization +  Time constraints

* Metaheuristics
J Time constraints
*  Computational constraints



e Statistical Methods
Data constraints (training)

* Deep Networks

/ \l te C h n I u e S a Data constraints (training)
*  Computational constraints

Key take-away: It is often possible to use techniques from one Al
domain to address constraints in a connected domain.

* Scientific

C,O o T Uptimization *  Time constraints

Time constraints Metah isti

i . . . * etaneuristics
. Montgaéaacrc;gszz:?jtsothers * Optimization of a IS EEES S
) ) simulation’sinput e Computational constraints
Computational constraints
parameters

* Optimal real-time
computation steering



Thank youl!

Gregory A. Koenig (koenig@acm.org)




The first “exascale” - 3
supercomputer Fugaku
- HPC, BD & Al

e Satoshi Matsuoka
e Director, RIKEN Center for Computation:
e 20191121 SC19 Panel @ Denver

40
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The ‘Fugaku’” Supercomputer, Successor to the K-Computer
Installation Dec. 20197, operations early 2021



R Arm64fx & Fugaku E& /Post-K are: Sm
o FUJltsu -Riken design A64fx ARM v8.2 (SVE), 48/52 core CPU

o HPC Optimized: Extremely high package high memory BW
(1TByte/s), on-die Tofu-D network BW (~400Gbps), high SVE
FLOPS (~3Teraflops), various Al support (FP16, INTS, etc.)

e Gen purpose CPU - Linux, Windows (Word), other SCs/Clouds

o Extremely power efficient - > 10x power/perf efficiency for CFD
benchmark over current mainstream x86 CPU

e Largest and fastest supercomputer to be ever built circa 2020

e > 150,000 nodes, superseding LLNL Sequoia o

e > 150 PetaByte/s memory BW AGAE

e Tofu-D 6D Torus NW, 60 Petabps injection BW (10x global IDC
traffic)

e 25~30PB NVMe L1 storage
e The first ‘exascale’ machine (not exa64bitflops =>apps perf.)



The

Green500, Nov. 2019 50Q FUjiTSU

HOME GREEMNS00 LISTS - RESOD

AB4FX prototype -
Fujitsu AG4FX 48C 2GHz
ranked #1 on the list

during its 2.0 Pflop/s Linpack performance run. It is listed on position 160 in the TOP500

n second position is the NA-1 system, a PEZY Computing / Exascaler Inc. system which
s currently being readied at PEZY Computing, Japan for a future installation at NA

Simulation in Japan. It achieve 16.3 GFlops/Watt power efficiency. It is on position 421 in the TOPS00.

¢ IBM Power syste
ork, USA_ It ach

« The Mo 3 on the Greenb00 is AIMOS, a ms at the Rensselzer Palytechnic Institute Center for

Computational Innovations [CCI), New tt and is listed at position 25 in the TOPS00

768X g e n e ra I p u rpose Green500 List for November 2019
A64 FX C P U W/O Listed below are the November 2019 The Green500's enargy-efficient supercomputers ranked from 1 to 10.

Note: Shaded entries in the table below mean the power data is derived and not meassured

accelerators —

Rank Rank  System Cores [TFlop/s] (kW] (GFlops/watts)
1 15% 2GHz 36,864 1,9995 118 16.876
u I I I I II b} 2 420 1,271,040 1,303.2 80 16.256

384.75%

- 16.876 GF/W o
* Power quality level 2 C o s )

FUJITSU CONFIDENTIAL it 1B PoweryetelBECIEL [FH POWERT 2L 2ATesne 1eRe0n0 ‘_E‘”ac‘éﬁy?right 2019 FUJITSU LIMITED
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High
gh Performance o Real Applications

o)
¢ FUJiTSU
he performance on 1n0de Relati(;/«sespeed up ratio

10 15

is ev.aluated for seven 0SS ey ———
applications =
roni S —

Measured on PRIMEHPC FX1000, o —
AB4FX 2.2GHz e

e rs——
e
Up to 1.8x faster over latest x86 SPECFEMGD I —
processor (24 core, 2.9GHz) x2 = —
High memory B/W and long SIMD s o —
length work effectively with these

a p pl ications FUJITSU AG4FX  Latest xB6 processof

Copyight 2019 FJTSU UNITED Per .
S formance in Power Efficiency "
FUjiTsu

The power EfﬁCiency on 1node Relative‘%owerefﬁciency ratio

\ 20 3.0 40

applica tions FrontiSTR r — ]
Measured on PRIMEHPC FX1000, ABINIT A S WE— —

AB4FX 2.2GHz SALMON

Up to 3.7x more efficient over latest  SPECEWD
x86 processor (24 core, 2.9GHz) x2 s

High power efficiency is achieved by
_conscious design and
energy o - g . FUJITSU AG4FX Latest x86 processor
implementation FUTSH Ao
Copyright 2019 FUITSU UMITED

FUJITSU CONFIDENTIAL



[ Pursuing Convergence of HPC & AI(1) o

e Acceleration of Simulation (first principles methods) with Al
(empirical method) : Al for HPC
e Interpolation & Extrapolation of long trajectory MD
e Reducing parameter space on Paretho optimization of results
e Adjusting convergence parameters for iterative methods etc.
o Al replacing simulation when exact physical models are
unclear, or excessively costly to compute
e Acceleration of Al with HPC: HPC for AT
o HPC Processing of training data -data cleansing
o Acceleration of (Parallel) Training: Deeper networks, bigger
training sets, complicated networks, high dimensional data...
o Acceleration of Inference: above + real time streaming data
e Various modern training algorithms: Reinforcement learning,
GAN, Dilated Convolution, etc.



[ R-CCS Pursuit of Convergence of HPC & AI(2) oL

e Acceleration of Simulation (first principles methods) with Al
(empirical method) : Al for HPC
o Most R-CCS research & operations teams investigating use of Al
for HPC
e 9 priority co-design issues area teams also extensive plans
o Essential to deploy AI/DL frameworks efficiently & at scale on
A64fx/Fugaku

e Acceleration of AI with HPC: HPC for Al

e New teams instituted in Science of Computing to accelerate Al
. Kento Sato (High Performance Big Data Systems)
. Satoshi Matsuoka (High Performance Al Systems)
. Masaaki Kondo Next Gen (High Performance Architecture)
o NEW: Optimized Al/DL Library via port of DNNL (MKL-DNN)
. Arm Research + Fujitsu Labs + Riken R-CCS + others
. First public ver. by Mar 2020, TensorFlow, PyTorch, Chainer, etc.



R Massive Scale Deep Learning on Fugaku qm

Fugaku Processor .
& High perf FP16&Int8 Unprecedened DL scalability

€®High mem BW for convolution
@ Built-in scalable Tofu network

High Performance DNN Convolution

O\

High Performance and Ultra-Scalable Network
for massive scaling model & data parallelism

injection BW for fast
reduction
Low Precision ALU + High Memory Bandw ynprecedented Scalability of Data/
idth + Advanced Combining of Convolutio

n Algorithms (FFT+Winograd+GEMM)



AB4FX technologies: Core performance  FUjiTsu

B High calc. throughput of Fujitsu’s original CPU core w/ SVE

® 512-bit wide SIMD x 2 pipelines and new integer functions

(GOPS) Core peak performance
500 INT8 partial dot product
200 [ ] C=2 (AixBi)+C
: 8bit 8bit 8bit  8pit
>460
300 >230 S o X X X X
BO B1 B2 B3
200 >115 B £
0o 57 B -
\ J
0 | | | 3Y2bit
64-bit 32-bit 16-bit  8-bit (Elementsize)

Multiply and add INT8 partial dot product

48 © 2019 FUJITSU



 Fujitsu-Riken-Arm-Linaro joint effort on Al framework ™
development on SVE/A64FX

Optimization Levels

~Original code

oL Franiworks -

(eg. TF, Caffe)

~Naive integration

~Layout propagation

Reorder g ‘

/Layerfusmn

~\
Transform weights to
integrate BN (offline

E \ g ( ) )

Exaops of sim, data, and Al on Fugaku and Cloud

\.

22 ueu.uoyad o129




5 Fundamental Transformation of Big Data o
From ‘Storing’ to ‘Processing’

e Exponential Growth of Data worsen with IoT
e Current: Cloud => Edge, IoT Future Edge => Cloud

e There is no way to store most of the data, we have to throw them
away

e Filtering, in flight from edge => Cloud
o Compression, in flight and analysis, application specific
e Synthesis through simulation and Al Surrogates

e Claim: Most big data observed just need statistical
characterization; where actual ‘data’ is necessary, they can be
generated from tiny data

e Days of ‘MapReduce’ will be gone RSN



[ Will HPC/AI Architectures Converge or Diverge o

e Converge
e High Bandwidth in Memory and Interconnect

o Fast storage for temporary store
o HPC for AI, AI for HPC in SW stack, applications

e Diverge

e Precision

. HPC: moderate to high (FP32-FP64), Al: moderate to low (FP32-
INT4)

o Arithmetic intensity

. HPC: low to moderate, Al: moderate (large CNN filters) to high
(transformers)



