ECP PowerSteering Project

PI: Tapasya Patki* (Lawrence Livermore National Laboratory)

Barry Rountree (Co-PI, LLNL), Aniruddha Marathe (LLNL), David Lowenthal (University of Arizona), Samuel Cotter (University of Arizona), Scott Walker (University of Arizona), Jonathan Eastep (Intel)

November 14, 2018
Overview: Production-grade, open source, scalable runtime integrates into HPC PowerStack

Problem:
- Power and energy are critical constraints for exascale
- Inefficient power management results in limited application performance, job throughput and system utilization, leading to added operational costs
- Existing approaches are ad-hoc research codes (Conductor, Adagio, RMAP, etc.) and have several scalability and portability limitations

Solution:
- Production-grade, industry-supported, open-source, job-level runtime (GEOPM) suitable for integration with resource manager/software stack
- Algorithms to analyze critical path of applications, distribute power intelligently to hardware components, mitigate variation, support portability to upcoming architectures and task-based programming models
Impact goals and impact metrics

<table>
<thead>
<tr>
<th>Impact Goal*</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Widespread use of GEOPM across ECP-enabled applications.</td>
<td>Number of ECP benchmarks, scientific applications, system software components, and processor architectures that have been integrated with GEOPM.</td>
</tr>
<tr>
<td>Demonstrate safe execution under either power or energy constraints.</td>
<td>Using multiple benchmarks, proxy applications and applications, sample instantaneous power and measure total energy, and demonstrate system-specified bounds are not exceeded.</td>
</tr>
<tr>
<td>Optimize runtime in power and energy constrained environments, with an expected average improvement of 20%*.</td>
<td>Show percentage runtime performance improvement across a selected suite of multiple benchmarks, proxy applications and codes while maintaining power at or under the system-specified bound. Comparison will be made with naïve uniform static power allocation and/or with full-energy execution. (*Exact improvements will depend on underlying processor architecture and application characteristics).</td>
</tr>
</tbody>
</table>
Power Steering can accomplish more science per dollar

- Power Steering can improve Time To Solution (TTS) by up to 30% on ECP applications
- 30% improvement in TTS translates to 30% of power savings
- Example:
 - If we assume a 30 MW system that is operational for 5 years, this is equivalent to 30 MW * 30% * 5, or 45 MW-Years
 - Assuming a power cost of $1M per MW-year, that is $45M for additional science
New power model with configuration space exploration

- Select application configurations intelligently at runtime
- Address manufacturing variation with a non-linear model

https://github.com/amarathe84/geopm/tree/dev/ecp
Port GEOPM to non-Intel architecture (IBM Power9)

- Purchased an IBM Power9 Witherspoon node for the Power Lab at LLNL
 - Allows for isolated root access, low level firmware development, disabling of features such as secure boot
 - Replica of a Sierra node, which allows developed software to be easily transferrable

- Developed DVFS-based model for GEOPM, explored OCC (on-chip controller) options

- Identified a bug in IBM OPAL firmware
 - Did not account for scenarios where GPUs were not used
 - Did not allow for setting of correct power caps
 - Did not expose knobs for TurboBoost/UltraScale

https://github.com/amarathe84/geopm/tree/ibm-port
https://github.com/open-power/skiboot/issues/195
Evaluate Legion applications, design power management for task-based models

- Successful integration of Legion and GEOPM, not implemented as a plugin due to MPI-related restrictions in current version of GEOPM
- Created a new DAXPY benchmark for evaluation

Experiments with the Legion DAXPY benchmark running without a power cap, with a 170W power cap with GEOPM, and with a 140W cap with RAPL. Execution time is shown on y-axis for 5 experiments.

https://github.com/scott-walker-llnl/legion-geo-interop
Scientific workflows need fine-grained power management

- Load imbalance cannot be addressed directly as memory may be shared between simulation, analysis and visualization components making data movement challenging
- Parts of large-scale workflows may not utilize GPUs or certain cores
- Critical path can be sped up by directing power to relevant tasks
Explore interfaces for GEOPM and HPC batch schedulers for ECP Argo

- Implement and test power-aware SLURM at scale
- Explore interfaces for fine-grained management and identify range of improvement
- Five job mixes, 5 levels of overprovisioning to understand the impact of degree of overprovisioning
- IvyBridge cluster HA8K in Japan, 965 nodes
- Sweet spot around 680 nodes shows that hardware overprovisioning with GRM can give better utilization and up to 40% higher throughput
Summary and Next Steps

- We are collaborating with scientific workflow teams, engaging users and evaluating more ECP applications.
- We are supporting multiple architectures and helping with community outreach through the HPC PowerStack charter.

HPC PowerStack https://powerstack.lrr.in.tum.de/
Thanks!