Opportunities of ML-based data analytics in ABCI

Ryousei Takano
National Institute of Advanced Industrial Science and Technology (AIST), Japan

Data Analytics for System and Facility Energy Management BoF, SC18, November 15th
INTRODUCTION OF ABCI SYSTEM
AIST Booth #2409

ABCI: Open Innovation Platform for advancing AI Research & Deployment

0.550 EFlops (FP16), 37.2 PFlops (FP64)
19.88 PFlops (Peak), Ranked #7 in Top500
14.423 GFlops/W, Ranked #4 in Green500
ImageNet training in 224 seconds (world record)

System (32 Racks)
Rack (17 Chassis)

Node Chassis (2 Compute Nodes)
Compute Node (4 GPUs, 2 CPUs)

Chips (GPU, CPU)

1088 Compute Nodes 4352 GPUs

GPU:
- 7.8 TFlops (FP64)
- 125 TFlops (FP16)

CPU:
- 1.53 TFlops (FP64)
- 3.07 TFlops (FP32)

TFlops:
- 34.2 TFlops (FP64)
- 506 TFlops (FP16)

PFlops:
- 68.5 PFlops (FP64)
- 1.01 PFlops (FP16)

GFlops/W:
- 1.16 PFlops (FP64)
- 17.2 PFlops (FP16)
- 0.55 EFlops (FP16)
ABCI achieves ultra-dense packaged rack

<table>
<thead>
<tr>
<th>Organization</th>
<th>AAIC</th>
<th>TSUBAME3.0</th>
<th>ABCI</th>
<th>Summit</th>
<th>TPU 3.0 Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of operation</td>
<td>2017</td>
<td>2017</td>
<td>2018</td>
<td>2018</td>
<td>2018</td>
</tr>
<tr>
<td>Number of nodes</td>
<td>50</td>
<td>540</td>
<td>1088</td>
<td>4608</td>
<td>unknown</td>
</tr>
<tr>
<td>Throughput</td>
<td>NVIDIA Tesla P100</td>
<td>NVIDIA Tesla P100</td>
<td>NVIDIA Tesla V100</td>
<td>NVIDIA Tesla V100</td>
<td>TPU 3.0</td>
</tr>
<tr>
<td>Processor (TP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of TP</td>
<td>400</td>
<td>2160</td>
<td>4352</td>
<td>27648</td>
<td>unknown</td>
</tr>
<tr>
<td>Theoretical Perf. (FP64)</td>
<td>2.2 PF</td>
<td>12.2 PF</td>
<td>37.2 PF</td>
<td>200 PF</td>
<td>unknown</td>
</tr>
<tr>
<td>Theoretical Perf. (DL)</td>
<td>8.6 PF</td>
<td>47.2 PF</td>
<td>550 PF</td>
<td>3.3 EF</td>
<td>100 PF / Pod</td>
</tr>
<tr>
<td>TOP500*</td>
<td>287</td>
<td>19</td>
<td>5</td>
<td>1</td>
<td>unknown</td>
</tr>
<tr>
<td>GREEN500*</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>unknown</td>
</tr>
<tr>
<td>#Nodes / Rack</td>
<td>6</td>
<td>36</td>
<td>34</td>
<td>16</td>
<td>unknown</td>
</tr>
<tr>
<td>#GPU / Rack</td>
<td>48</td>
<td>144</td>
<td>136</td>
<td>96</td>
<td>unknown</td>
</tr>
<tr>
<td>kW / Rack</td>
<td>22 kW</td>
<td>64.8 kW</td>
<td>67.33 kW</td>
<td>45-55 kW (est.)</td>
<td>unknown</td>
</tr>
<tr>
<td>DL Perf. / Rack</td>
<td>0.9 PF</td>
<td>3.1 PF</td>
<td>17 PF</td>
<td>12 PF</td>
<td>12.5 PF (100 PF / 8 rack)</td>
</tr>
</tbody>
</table>

*June 2018
AI Datacenter
“Commoditizing supercomputer cooling technologies to Cloud (70kW/rack)”

- Single floor, cost effective building
- Hard concrete floor 2t/m² weight tolerance for racks and cooling pods
- Number of Racks
 - Initial: 90 (ABCI uses 41 racks)
 - Max: 144
- Power capacity: 3.25 MW
 - ABCI uses 2.3MW max
- Cooling capacity: 3.2MW
 - 70kW/rack: 60kW water + 10kW air
Free cooling with hybrid air/water cooling system
Optimizing AI data center operation using ML

Develop a framework for optimizing the operation of AI data center by self-adapting ML/DL technologies

World leading supercomputing systems for big data / AI

Data center generates huge amount of sensor data

Monitoring data (job log and facility sensor data)

Data analytics

Learning/Inference

Train and apply parameters for improving the operation

Data Store

• Reduce power consumption
• Improve resource utilization
• Reduce HW maintenance fee using failure prediction

Developing a framework for optimizing the operation of AI data center by self-adapting ML/DL technologies

Data-driven operation
Monitoring mechanism

Data Analytics / ML tools

Grafana

MariaDB

Prometheus (Time series DB)

Job logs, accounting info.

Sensors (server, facility)

ABCi Facility Monitoring through Grafana
Collecting sensor data

<table>
<thead>
<tr>
<th>Location</th>
<th>#items</th>
<th>Sampling rate</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>873</td>
<td>1 min.~1 hour</td>
<td>CPU/GPU usage, memory usage, I/O usage, temperature, power consumption, etc</td>
</tr>
<tr>
<td>IB/Ethernet</td>
<td>6245</td>
<td>1 min.~1 hour</td>
<td></td>
</tr>
<tr>
<td>Switch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job scheduler</td>
<td>26</td>
<td>-</td>
<td>Job ID, account ID, group ID, job type, resource type, walltime, application info., etc</td>
</tr>
<tr>
<td>AI data center</td>
<td>408</td>
<td>1 sec.</td>
<td>Temperature (hot/cold aisle), rack inlet air temperature, humidity, power consumption</td>
</tr>
<tr>
<td>Site</td>
<td>8</td>
<td>1 min.</td>
<td>Water temperature, volume of water flow, power consumption of pump, status, CDU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Temperature, humidity, wind speed/direction, rainfall</td>
</tr>
</tbody>
</table>
ABCI Software Stack

Software

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>CentOS, RHEL</td>
</tr>
<tr>
<td>Job Scheduler</td>
<td>Univa Grid Engine</td>
</tr>
<tr>
<td>Container Engine</td>
<td>Docker, Singularity</td>
</tr>
<tr>
<td>MPI</td>
<td>OpenMPI, MVAPICH2, Intel MPI</td>
</tr>
<tr>
<td>Deep Learning</td>
<td>Caffe, Caffe2, TensorFlow, Theano, Torch, PyTorch, CNTK, MXnet, Chainer, Keras, etc.</td>
</tr>
<tr>
<td>Big Data Processing</td>
<td>Hadoop, Spark</td>
</tr>
</tbody>
</table>

Container support

- Containers enable users to instantly try the state-of-the-art software developed in AI community.
- ABCI supports two container technologies:
 - **Docker**, having a large user community
 - **Singularity**, recently accepted HPC community
- ABCI provides various single-node/distributed deep learning framework container images optimized to achieve high performance on ABCI
Use Case 1:

EFFICIENT FACILITY CONTROL
100% free cooling is possible in high summer

- The first ABCI grand challenge was held on 22-26 July 2018.
- The peak power consumption reached about 1.5MW.

Cooling Water (From ABCI): <40°C

Cooling Water (To ABCI): <32°C

Max./min. temperature in Kashiwa in July 2018
Use case 1: More efficient and smarter facility control

- Cooling towers cannot so quickly adjust the water temperature with server load fluctuation.
 - The longer water circuit loop, the slower response.
 - In some HPC/data centers, it might be serious.
- There is a chance of applying ML to improve utilization.
 - Workload prediction is enable to generate cooler water before coming heavy workload. That means...
 - Job scheduler executes more jobs under temperature constraint
 - GPU/CPU runs more higher frequency.
Use case 2:

EFFICIENT JOB SCHEDULING
Preliminary data analysis for efficient deep learning job scheduling in AAIC (prototype system of ABCI)

- Analyze 55,127 jobs submitted on AAIC from 07/14/2017 to 12/31/2017
- 95% jobs are Single GPU jobs and WRA is too low, 0.103 on average.

1 GPU/ Multi GPU / Multi Node Jobs

1 Node, Multi GPU Jobs

Multi Node Jobs

Walltime Request Accuracy (WRA)

\[
WRA_i = \frac{\text{Walltime}_i}{\text{Walltime Request}_i}
\]
Use case 2: Efficient job scheduling

- Predicting job execution time and user incentive design to improve WRA are important for efficient job scheduling.

Machine Learning Predictions for Underestimation of Job Runtime on HPC System [Guo2018]

Predicting Performance Using Collaborative Filtering [Salaria2018]

Collaborative filtering (CF) based algorithms handle this by identifying inter-dependencies linking benchmarks with systems.
Use case 2: Efficient job scheduling

- Future work: Job scripts contain important information including package dependencies, program parameters, container image, which will greatly affect the efficiency and execution time of jobs.
 - E.g., Use CNN to process job scripts [Wyatt2018]
Thank you for your attention!

More Information is available! https://abci.ai/

AIST Booth #2409