

Future Proofing

- Data Centers need to run for 10 to 20 years
- HPC systems run for 3 to 5 years
- 4, 5, or 6 Refreshes may happen in the same building

How do I design my data center for such a lifetime?

The future is ALL about liquid cooling, right?

- Warm water has the best TCO, right?
- I keep hearing about warm water; W3
- Let's ask ASHRAE

ASHRAE

- American Society of Heating, Refrigerating, and Air-Conditioning Engineers
- TC 9.9 Mission Critical Spaces
 - Largest TC in ASHRAE
- High collaborative tech society organization setting guidelines for air-cooling temperatures and humidities, as well as liquidcooling temperatures
 - Pretty much all equipment vendors actively participate

ASHRAE Air Cooling 2011 Guidelines

(a)	Equipment Environmental Specifications							
Classes (a	Product Operations (b)(c)					Product Power Off (c) (d)		
	Dry-Bulb Temperature (°C) (e)(g)	Humidity Range, non-Condensing (h) (i)	Maximum Dew Point (°C)	Maximum Elevation (m)	Maximum Rate of Change(°C/hr)	Dry-Bulb Temperature (°C)	Relative Humidity (%)	Maximum Dew Point (°C)
R	Recommended (Applies to all A classes; individual data centers can choose to expand this range based upon the							
	analysis described in this document)							
A1 0 A4	18 to 27	5.5°C DP to 60% RH and 15°C DP						
	Allowable							
A1	15 to 32	20% to 80% RH	17	3050	5/20	5 to 45	8 to 80	27
A2	10 to 35	20% to 80% RH	21	3050	5/20	5 to 45	8 to 80	27
А3	5 to 40	-12°C DP & 8% RH to 85% RH	24	3050	5/20	5 to 45	8 to 85	27
A4	5 to 45	-12°C DP & 8% RH to 90% RH	24	3050	5/20	5 to 45	8 to 90	27
В	5 o 35	8% RH to 80% RH	28	3050	NA	5 to 45	8 to 80	29
C	5 to 40	8% RH to 80% RH	28	3050	NA	5 to 45	8 to 80	29

ASHRAE Liquid Cooling

	Typical Infras	structure Design	
Liquid Cooling Classes	Main Cooling Equipment	Supplemental Cooling Equipment	Facility Supply Water Temp(C)
W1(st e Figure 3a) W2(se : Figure 3a)	Chiller/Cooling Tower	Water-side Economizer (w. drycooler or cooling tower)	2 - 17 2 - 27
W3(se : Figure 3a) W4(s : e Figure 3b)	Cooling Tower VVater-side Economizer (w drycooler or cooling tower)	Chiller N/A	2 - 32 2 - 45
W5(see Figure 3c) See Operational Characteristics	Building Heating System	Cooling Tower	>45

ASHRAE Liquid Cooling

	Typical Inf as	structure Design	
Liquid Cooling Classes	Main Cooling Equipment	Supplemental Cooling Equipment	Facility Supply Water Temp(C)
W1(see Figure 3a) W2(see Figure 3a)	Chiller/Cooling Tower	Water-side Economizer (w. drycooler or cooling tower)	2 - 17 2 - 27
W3(see Figure 3a) W4(see Figure 3b)	Cooling Tower Water-side Economizer (w drycooler or cooling tower)	Chiller N/A	2 - 32 2 - 45
W5(see Figure 3c) See Operational Characteristics	Building Heating System	Cooling Tower	>45

Maximizing Efficiency while Minimizing TCO

- It makes no difference;
 Air-Cooling or Liquid-Cooling....
- The best starting point for your new data center design is to run it AS COLD AS POSSIBLE without a chiller

Show me....

	Power	
Server Power	2420 kW	
CRAC Fan	111 kW	
CW Pump	25 kW	
Tower Pump	20 kW	
Compressor	626 kW	
Tower Fan	44 kW	

Wet bulb temperature cumulative distribution function - Annual SALT LAKE CITY INT'L ARPT, UT, USA (725720)

Wet bulb temperature cumulative distribution function - Annual SALT LAKE CITY INT'L ARPT, UT, USA (725720)

*Envelopes Represent **Conditions at IT Equipment Inlet**

Your System at A1 – recommended ~27°C (81°F)

Your System at A2 – allowable ~35°C (95°F)

Your System at W3 onlyair temperatures and humidity too high!

Summary

- Liquid cooling can be a huge boost for performance and heat removal
- But don't forget the air-cooled gear; temperature and humidity
- HPC can't live on W3 alone!

Remember! Start here: as cold as you can, with out a chiller (and don't forget the other stuff)

