Future Proofing - Data Centers need to run for 10 to 20 years - HPC systems run for 3 to 5 years - 4, 5, or 6 Refreshes may happen in the same building How do I design my data center for such a lifetime? ### The future is ALL about liquid cooling, right? - Warm water has the best TCO, right? - I keep hearing about warm water; W3 - Let's ask ASHRAE #### **ASHRAE** - American Society of Heating, Refrigerating, and Air-Conditioning Engineers - TC 9.9 Mission Critical Spaces - Largest TC in ASHRAE - High collaborative tech society organization setting guidelines for air-cooling temperatures and humidities, as well as liquidcooling temperatures - Pretty much all equipment vendors actively participate ### ASHRAE Air Cooling 2011 Guidelines | (a) | Equipment Environmental Specifications | | | | | | | | |---------------|---|--|------------------------------|-----------------------------|----------------------------------|---------------------------------|-----------------------------|------------------------------| | Classes (a | Product Operations (b)(c) | | | | | Product Power Off (c) (d) | | | | | Dry-Bulb
Temperature
(°C) (e)(g) | Humidity Range,
non-Condensing
(h) (i) | Maximum
Dew Point
(°C) | Maximum
Elevation
(m) | Maximum Rate
of Change(°C/hr) | Dry-Bulb
Temperature
(°C) | Relative
Humidity
(%) | Maximum
Dew Point
(°C) | | R | Recommended (Applies to all A classes; individual data centers can choose to expand this range based upon the | | | | | | | | | | analysis described in this document) | | | | | | | | | A1
0
A4 | 18 to 27 | 5.5°C DP to
60% RH and
15°C DP | | | | | | | | | Allowable | | | | | | | | | A1 | 15 to 32 | 20% to 80%
RH | 17 | 3050 | 5/20 | 5 to 45 | 8 to 80 | 27 | | A2 | 10 to 35 | 20% to 80%
RH | 21 | 3050 | 5/20 | 5 to 45 | 8 to 80 | 27 | | А3 | 5 to 40 | -12°C DP & 8%
RH to 85% RH | 24 | 3050 | 5/20 | 5 to 45 | 8 to 85 | 27 | | A4 | 5 to 45 | -12°C DP & 8%
RH to 90% RH | 24 | 3050 | 5/20 | 5 to 45 | 8 to 90 | 27 | | В | 5 o 35 | 8% RH to 80%
RH | 28 | 3050 | NA | 5 to 45 | 8 to 80 | 29 | | C | 5 to 40 | 8% RH to 80%
RH | 28 | 3050 | NA | 5 to 45 | 8 to 80 | 29 | ## **ASHRAE Liquid Cooling** | | Typical Infras | structure Design | | |---|---|--|----------------------------------| | Liquid Cooling
Classes | Main Cooling Equipment | Supplemental Cooling
Equipment | Facility Supply Water
Temp(C) | | W1(st e Figure 3a)
W2(se : Figure 3a) | Chiller/Cooling Tower | Water-side Economizer
(w. drycooler or cooling tower) | 2 - 17
2 - 27 | | W3(se : Figure 3a)
W4(s : e Figure 3b) | Cooling Tower
VVater-side Economizer
(w drycooler or cooling tower) | Chiller
N/A | 2 - 32
2 - 45 | | W5(see Figure 3c)
See Operational
Characteristics | Building Heating System | Cooling Tower | >45 | ## **ASHRAE Liquid Cooling** | | Typical Inf as | structure Design | | |---|--|--|----------------------------------| | Liquid Cooling
Classes | Main Cooling Equipment | Supplemental Cooling
Equipment | Facility Supply Water
Temp(C) | | W1(see Figure 3a)
W2(see Figure 3a) | Chiller/Cooling Tower | Water-side Economizer
(w. drycooler or cooling tower) | 2 - 17
2 - 27 | | W3(see Figure 3a)
W4(see Figure 3b) | Cooling Tower
Water-side Economizer
(w drycooler or cooling tower) | Chiller
N/A | 2 - 32
2 - 45 | | W5(see Figure 3c)
See Operational
Characteristics | Building Heating System | Cooling Tower | >45 | ### Maximizing Efficiency while Minimizing TCO - It makes no difference; Air-Cooling or Liquid-Cooling.... - The best starting point for your new data center design is to run it AS COLD AS POSSIBLE without a chiller #### Show me.... | | Power | | |-----------------|---------|--| | Server
Power | 2420 kW | | | CRAC Fan | 111 kW | | | CW Pump | 25 kW | | | Tower Pump | 20 kW | | | Compressor | 626 kW | | | Tower Fan | 44 kW | | #### Wet bulb temperature cumulative distribution function - Annual SALT LAKE CITY INT'L ARPT, UT, USA (725720) #### Wet bulb temperature cumulative distribution function - Annual SALT LAKE CITY INT'L ARPT, UT, USA (725720) *Envelopes Represent **Conditions at IT Equipment Inlet** # Your System at A1 – recommended ~27°C (81°F) # Your System at A2 – allowable ~35°C (95°F) # Your System at W3 onlyair temperatures and humidity too high! #### Summary - Liquid cooling can be a huge boost for performance and heat removal - But don't forget the air-cooled gear; temperature and humidity - HPC can't live on W3 alone! Remember! Start here: as cold as you can, with out a chiller (and don't forget the other stuff)