

Torsten Wilde (LRZ)



#### Who we are



- EEHPC WG Sub Group:
  - Computing Systems
    - System Workload Power Measure Methodology
- Define a standard and accurate (high quality) measurement methodology to measure power and energy consumption of HPC systems
  - Get comparable results
  - Define what is included and how it is measured
- Support the Green500 list
- Support energy efficient HPC













### **Outline**



- **Motivation**
- What to expect from the session
  - Node variability
  - Interconnect
  - Workload phases
- Q&A















## Why are we here



- Power consumption and facility costs of HPC are increasing.
  - "Can only improve what you can measure"
- What is needed?
  - Converge on a common basis for:
    - METHODOLOGIES
    - WORKLOADS
    - METRICS
  - for energy-efficient supercomputing, so we can make progress towards solutions.











# **Power/Energy Measurement Methodology**



|         | Aspect 1:<br>Time Fraction &<br>Granularity                       | Aspect 2:<br>Machine<br>Fraction         | Aspect 3:<br>Subsystems<br>Measured                                                      |
|---------|-------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------|
| Level 1 | 20% of run: 1 average power measurement                           | (larger of)<br>1/64 of machine or<br>1kW | [Y] Compute nodes [ ] Interconnect net [ ]Storage [ ]Storage Network [ ]Login/Head nodes |
| Level 2 | 100% of run: at least<br>100 average power<br>measurements        | (Larger of)<br>1/8 of machine or<br>10kW |                                                                                          |
| Level 3 | 100% of run: at least<br>100 running total<br>energy measurements | Whole machine                            |                                                                                          |













# **Measurement Challenges Example (SuperMUC Lev1-3)**



| Efficiency Level   | Mflops/Watt full run | Mflops/Watt core phase |
|--------------------|----------------------|------------------------|
| L1 (+- 5%)         | 1055                 | 1055                   |
| L2 (>10kW) (+- 5%) | 1011                 | 917                    |
| L2 (>1/8) (+- 5%)  | 994                  | 900                    |
| L3 (+- 0.5%)       | 887                  | 855                    |

#### Level 3 includes:

- Compute nodes
- Interconnect network
- GPFS mass storage systems
- Storage network
- Head/login and management nodes
- Internal warm water cooling system (machine room internal cooling such as water pumps, heat exchangers, etc)
- PDU power distribution losses

"A power-measurement methodology for large scale, high performance computing", Runner-up Best Paper Award, Proceedings of the 5th ACM/SPEC international conference on Performance engineering, Dublin, Ireland 2014

















# The need to improve the measurement methodology



- Level 1, 2, and 3 are not comparable
  - How can we change Level 1 and 2 requirements to reach a relative "high quality" result
- Need to question legacy assumptions:
  - Measuring a small part of a system and scaling it up doesn't introduce to much of an error
  - The power draw of the interconnect fabric is not significant when compared to the compute system
  - The workload phase of HPL will look similar on all HPC systems











## What to expect



#### 3 Challenges

- Node variability
  - Daniel Hackenberg, TU Dresden, Germany
- Interconnect
  - Robin Goldstone, Lawrence Livermore National Laboratory
- Workload phase
  - Tom Scogland, Lawrence Livermore National Laboratory and Green500













# Summary



- Investigate statistical requirement for number of nodes for level 1 and 2
  - Cherry picking still possible
- Network power is significant
  - Topology advantage not seen for HPL (Green500)
  - Identify metric and benchmark
- "Workload Phase" needs to be refined and MPI rank variability is a concern.
- Easiest might be to just measure everything
- Contact us if you are interested in helping us













# **Thank You! Questions?**















