EEHPC
The Electric Grid and HPC

Supercomputing 2013

November 17, 2013

Anna Maria Bailey, LLNL
Jim Rogers, ORNL
Josip Loncaric, LANL
Bob Conroy, OSI Soft
EE HPC Working Group Team
The Electric Grid and HPC

- Problem statement:
 - HPC centers are large kilowatt to megawatt energy consumers
 - Can benefit from improved energy efficiency
 - May benefit from participating in the electric grid-level energy management
 - May impact and/or get impacted by the electricity power quality and renewable generation

- Investigative effort:
 - Review of current research and practice
 - Top100 US sites questionnaire
 - Team output – report
 - LLNL, LANL, ORNL, ANL, LBNL, NCSA, WPAFB, NOAA, Purdue, SDSC, Intel

- Please contact Natalie Bates if you are interested in joining this team.
Challenge

- Recent installed HPC systems have raised concerns with some utilities
- Requires modeling power consumption and quality of large HPC computational block loads
- Requires the need to address operational cost increases with larger load
- Requires the ability to know what to monitor
 - Continually log events of HPC workload to include scheduled maintenance, unscheduled power interruptions, power glitches, etc. to gain broader knowledge
Amplified Bursty Behavior Due to Magnitude of Computer

- Scheduled maintenance can result in 5 MW load swings to the grid in a short period of time

- Bursty behavior of real workload indicated that real power fluctuations can be more abrupt
Addressing the Concerns and Challenges of HPC to the Grid

- Jim Rogers – ORNL
 - Discuss grid modeling of the TVA electrical grid at ORNL and how large computational block loads relate to the TVA

- Josip Loncaric – LANL
 - Discuss the challenge of variable power demand typical for HPC workloads, and the importance of working with the utility to minimize power costs

- Bob Conroy – OSI Soft
 - Discuss the benefits of benchmarking and metrics of large block loads. “You cannot improve what you do not measure”.