SC12 ENERGY EFFICIENCY METRICS
Why Metrics?
- We can’t manage what we don’t measure
- Trends over time
- Comparisons between clusters or data centers

What makes a good metric?
- a) simplicity, b) it matters, c) measureable, d) actionable

What we will cover
- Data Center Energy Efficiency
- Infrastructure Specific Metrics
- Sustainability
- Compute Performance
THE DATA CENTER

Site

Utility → UPS → PDU → IT Equipment

Data Center

Chiller Plant → CRAC Unit

Data Center

Utility

Site

IT Equipment

PDU

CRAC Unit

Chiller Plant

Data Center

Utility
PUE – SIMPLE AND EFFECTIVE

PUE is defined in terms of total annual energy and total annual IT energy, allowing a more valid site-to-site comparison.

\[
PUE = \frac{\text{Total Energy}}{\text{IT Energy}} = \frac{\text{Cooling} + \text{PowerDistribution} + \text{Misc} + \text{IT}}{\text{IT}} = \frac{a + b}{d}
\]
Green Grid, ASHRAE, DOE, EPA and others agreed to detailed PUE definition.
PUES: REPORTED AND CALCULATED

<table>
<thead>
<tr>
<th>Site</th>
<th>PUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global bank’s best data center (of more than 100)</td>
<td>2.25</td>
</tr>
<tr>
<td>EPA Energy Star Average</td>
<td>1.91</td>
</tr>
<tr>
<td>Intel average</td>
<td>>1.80</td>
</tr>
<tr>
<td>Intel Jones Farm, Hillsboro</td>
<td>1.41</td>
</tr>
<tr>
<td>ORNL</td>
<td>1.25</td>
</tr>
<tr>
<td>T-Systems & Intel DC2020 Test Lab, Munich</td>
<td>1.24</td>
</tr>
<tr>
<td>Google</td>
<td>1.16</td>
</tr>
<tr>
<td>Leibniz Supercomputing Centre (LRZ)</td>
<td>1.15</td>
</tr>
<tr>
<td>Containers</td>
<td>1.1-1.6</td>
</tr>
<tr>
<td>National Center for Atmospheric Research (NCAR)</td>
<td>1.10</td>
</tr>
<tr>
<td>Yahoo, Lockport</td>
<td>1.08</td>
</tr>
<tr>
<td>Facebook, Prineville</td>
<td>1.07</td>
</tr>
<tr>
<td>National Renewable Energy Laboratory (NREL)</td>
<td>1.06</td>
</tr>
</tbody>
</table>
MORE ON PUE

- Partial PUE (pPUE)
- DCiE – 1/PUE.... No longer used
- Power or Energy?
 - Both!
- Site or Source?
 - Source based, Energy conversion factors needed
 - All Electric data centers: $PUE_{source} = PUE_{site}$
- Subscripts
 - Global Harmonization has added PUE_0, PUE_1, PUE_2, PUE_3
RATING SYSTEMS

- Energy Star for Data Centers
- European Union Code of Conduct for Data Centers
- The Green Grid
- LEED
- Uptime Institute Tier Rating System
 - Tier 1 thru Tier IV
ERE DEFINITION

\[PUE = \frac{\text{Total Energy}}{\text{IT Energy}} \]

\[PUE = \frac{\text{Cooling} + \text{Power} + \text{Lighting} + \text{IT}}{\text{IT}} \]

\[ERE = \frac{\text{Total Energy} - \text{Reused Energy}}{\text{IT Energy}} \]

\[ERE = \frac{\text{Cooling} + \text{Power} + \text{Lighting} + \text{IT} - \text{Reused}}{\text{IT}} \]
Define energy reuse factor (ERF) as:

\[
ERF = \frac{\text{Reuse Energy}}{\text{Total Energy}}
\]

Then:

\[
ERE = (1 - ERF) \times PUE
\]

And finally:

\[
ERE = \frac{\text{Cool + Pwr + Light + IT - Reused}}{\text{IT}} = (1 - ERF) \times PUE
\]

ERF and PUE are mathematically related, but differ and need to defined and reported clearly.
ERE – ADDS ENERGY REUSE TO THE PUE CONCEPT

\[ERE = \frac{\text{Total Energy} - \text{Reuse Energy}}{\text{IT Energy}} \]

\[= \frac{\text{Cooling} + \text{PowerDistribution} + \text{Misc} + \text{IT} - \text{Reuse}}{\text{IT}} = \frac{a + b - g}{d} \]
WATER AND CARBON - INCREASING FOCUS ON SUSTAINABILITY

- Two new metrics for Data Center sustainability
- Published by The Green Grid
- Development of the Metrics will give better focus on Data Center sustainability
CUE – CARBON USAGE EFFECTIVENESS

\[PUE = \frac{\text{Total Facility Energy}}{\text{IT Energy}} \]

\[CUE = \frac{\text{Total CO emissions caused by the Total Data Center Energy}}{\text{IT Energy}} \]

CUE ~ kgCO₂eq/kWh
Includes scope 1 and scope 2, but not scope 3
WUE – WATER USAGE EFFECTIVENESS

\[PUE = \frac{\text{Total Facility Energy}}{\text{IT Energy}} \]

\[WUE = \frac{\text{Annual Site Water Usage}}{\text{IT Energy}} \]

\[WUE_{\text{source}} = \frac{\text{Annual Source Energy Water Usage} + \text{Annual Site Water Usage}}{\text{IT Energy}} \]

\[WUE \sim \text{Liters/kWh} \]
$\text{ITUE} = \frac{\text{total energy into the IT equipment}}{\text{total energy into the compute components}} = \frac{i}{g}$
$$PUE = \frac{\text{Total Energy}}{\text{IT Energy}} = \frac{a + b}{d}$$

$$\text{ITUE} = \frac{\text{Total Energy}}{\text{Compute Energy}} = \frac{g}{i}$$

$$TUE = \text{ITUE} \times PUE = \frac{a + b}{i}$$
INFRASTRUCTURE METRICS

- **Power / area** – (W / sq. ft. or W / m²)
- **Power / rack** – (kW / rack)
- **Cost / area** – ($ / sq. ft., € /m²)
- **Cost / power** – ($ /kW, € /kW)
- **Area/Area** – Data Center “white space” / Infrastructure space
- **Cost/Cost** – Data Center / IT equipment
- **Percentage of cost** – % of each Civil/Structural/Architectural (CSA), Power, and Cooling
- **Cost/Cost** – Operational cost / purchase cost
- **Area/Rack** – sq ft / rack
We need a miles-per-gallon metric for compute efficiency

Recall: what makes a good metric?
- a) simplicity, b) it matters, c) measureable, d) actionable

We have had decent ways to measure “miles” but the “gallons” have been missing

Good recent progress. Let’s review....
Data from spec.org

SPECPOWER

LOWER is BETTER

HIGHER is BETTER

BETTER EFFICIENCY

HIGHER PERFORMANCE

LOWER POWER

SSJ Ops

HIGHER is BETTER
SPEC OMP2012

- SPEC OMP2012 updated from previous metrics (SPEC OMP2001)
- SPEC OMP2012 adds SPECpower power measuring tools and methods (Perf/Watt)
- Open MP – runs on shared memory systems
- BoF: Tuesday, 5:30-7:30, Room 155-B, SPEC HPG Benchmarks For Next Generation Systems
- http://www.spec.org/omp2012/
EEHPC WG working on the denominator
- How do we measure the energy used in the benchmark run?

Version 2 Beta-testing completed by a range of participating HPC Centers

The Green Grid is a collaborator

Working with Top 500, Green 500, and Green Graph 500

BoF: Wednesday, 12:15-1:15, Room 250-AB, Setting Trends for Energy Efficiency

\[\varepsilon = \frac{\text{Perf}}{\text{Watt}} \]

http://eehpcwg.lbl.gov/