The PowerStack Initiative
A Community-driven Effort

EEHPC-WG Webinar Series
September 12, 2018

PowerStack Core Committee (alphabetical order)

- Cantalupo, Christopher (Intel, USA)
- Eastep, Jonathan (Intel, USA)
- Jana, Siddhartha (EEHPC WG, USA) -- Speaker
- Kondo, Masaaki (Univ of Tokyo, Japan)
- Maiterth, Matthias (LMU Munich, Germany)
- Marathe, Aniruddha (LLNL, USA)
- Patki, Tapasya (LLNL, USA)
- Rountree, Barry (LLNL, USA)
- Sakamoto, Ryuichi (Univ of Tokyo, Japan)
- Schulz, Martin (TU-Munich, Germany)
- Trinitis, Carsten (TU-Munich, Germany)
Outline

• Motivation
• Charter of the PowerStack initiative
• Stakeholders and research collaborators
• PowerStack overview
 • PowerStack block diagram
 • Existing Components
 • Working groups
• Next steps / Call to Action
Resource Utilization Variability at System-Level

Conventional Systems

Overprovisioned Systems

Variation in Idle Power in Overprovisioned Systems

% Idle power varies based on application mix

Wasted (idle) power

Job power

Performance Variability at Job- and Platform-Level

- **Causes**
 1. Application design – bulk synchronization, collective operations
 2. Non-deterministic topology due to node availability
 3. Manufacturing variability
 - Performance differences no longer compensate for power consumption
 - Continues to increase, and will worsen with heterogeneity
 - 4x difference between two generations of Intel processors

- **Needs advanced runtime options for mitigation**
 - Need to know power/performance profile of each socket
 - Average power caps will create load imbalance

Source: ISC 2018, Tutorials, Schulz et al., “Boosting Power Efficiency of HPC Applications with GEOPM”
Race-to-halt is not a solution!

Impact of CPU Frequency Scaling of a NAS kernel

Takeaway:
- Extent of Speedup gains and Energy savings due to DVFS drops with N
- Behavior of application varies with N

Source: ISC 2018, Tutorials, Schulz et al., "Boosting Power Efficiency of HPC Applications with GEOPM"
Introducing Job-awareness within HPC Systems

- State-of-the-art application-level runtime systems help cover the efficiency gap!
- Leverage job-awareness while driving system-wide efficiency
 - E.g. Use of GEOPM, free open source hierarchical distributed runtime
- Provides application-aware dynamic optimization of HW power knob settings
- Up to 30% reduction in application time-to-solution in power-capped systems

Lower is better!

Source: ISC 2017, Proceedings, Eastep et al., "GEOPM: A vehicle for HPC community collaboration on co-designed energy management solutions"
The PowerStack Initiative

- Collaboration towards a well-defined, community-wide stack that accounts for power-awareness across various layers of the HPC software ecosystem

- Charter:
 1. Identify different actors that play a role in energy- and power-aware job scheduling and resource management
 2. Reach a community-wide consensus on the roles and responsibilities of the different actors, their interoperability, and communication protocols
 3. Work towards prototypes and full-scale production-grade solutions that are adaptive and feedback-driven
PowerStack Stakeholders

Participants of the PowerStack seminar (June 2018):

- LLNL, LANL, Sandia, Argonne, Riken, STFC
- ATOS/Bull, Cray, Fujitsu, IBM, Intel, AMD, ARM, HPE, Altair
- TU-Munich, TU-Dresden, UniBo, SDU, Univ of Tokyo, LRZ, Grenoble, EEHPC-WG

EEHPC-WG’s insight into sites investing in Energy- and Power-aware Job Scheduling and Resource Management (EPA-JSRM)
PowerStack - 3 key actors

- **Job Scheduler**
 - Site Admin
 - Application Developer

- **Job Manager**
 - Application profiling framework
 - Application, MPI, libraries

- **System Resource Manager**
 - Job profilling DB
 - Software Power optimizer
 - Power monitor + control

- **Platform Manager**
 - Health/Status monitor
 - Firmware Power optimizer
 - Power monitor + control
 - Out-of-band actuators & sensors
 - In-band actuators & sensors

Key Components

- Active Node
 - Job aware
 - Job agnostic

- Idle Node
 - Power monitor + control
 - Software Power optimizer

- User

Optional Hints

- Generated by supporting tools/frameworks
- Generated by human actors
- Power/Energy constraints and optimization settings
Examples of PowerStack components

<table>
<thead>
<tr>
<th>PowerStack Software actors</th>
<th>Examples of current state-of-the-art components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload Management</td>
<td>Slurm, ALPS, PBSPro, Cobalt</td>
</tr>
<tr>
<td>Application / Job manager</td>
<td>GEOPM, Conductor</td>
</tr>
<tr>
<td>Platform / Node manager</td>
<td>PAPI, PowerAPI, Variorum, NVML, Redfish, HDEEM, Application runtime params, Fabric manager</td>
</tr>
</tbody>
</table>
Working Groups catering to specific topics

Working Group 1:
- PowerStack Site policy

Working Group 2
- PowerStack Adaptive/Runtime control

Working Group 3
- PowerStack platform interaction

Site Admin ➔ **Job Scheduler** ➔ **Application Manager** ➔ **PMIx**

- **Power API**
 - RAPL
 - NVML
 - HDEEM
 - CAPMC
 - IBM / ARM / x86 counters

- **Controls & Signals**
 - libMSR
 - Thermal sensors
 - sysfs
 - MMIO
 - Timers
 - Fabric Counters
 - Data stream / acquisition channels
 - App / MPI / OpenMP / OpenSHMEM runtime params
 - I/O storage counters

Platform Manager ➔ **Working Group 1**

The PowerStack Initiative -- EEHPC WG Webinar -- September 12, 2018
Call to Action

Next Steps:

1. First General Membership Meeting between Sept 17-28, 2018

2. Topic-specific working-groups specific Periodic Meetings
 • Once every 1.5 months (~ 6 weeks)
 • Subscribe to Mailing lists

Mailing list names:

• PowerStack Announcements powerstack-announce@googlegroups.com
• PowerStack Development powerstack-dev@googlegroups.com
• PowerStack Adaptive Runtime and Control powerstack-runtime@googlegroups.com
• PowerStack Platform Interaction powerstack-platform@googlegroups.com
• PowerStack Site Policy and Verification powerstack-sitepolicy@googlegroups.com
Acknowledgements:

- PowerStack Core Committee
- PowerStack Seminar Attendees

Speaker Contact:

- Sid Jana siddhartha.jana@intel.com
Backup Slides
Interoperability between a Job Scheduler and a Job Manager

Current Approach (centralized)

- Each node receives the power/energy constraints and optimization settings directly from the job scheduler.

Proposed Approach (decentralized) *(pending community consensus)*

- Master node as the sole access point for the job scheduler receives the power/energy constraints and optimization settings.

- Decentralized Job scheduler.

- Scheduler daemon running on master node for Job 1.

- Each job governed by an instance of the Job Manager.
Proposed Design of a Job Manager

Example of an open-source Job Manager: GEOPM
- Globally Extensible Open Power Manager
- Included within OpenHPC
- Open-source (BSD license), platform/vendor agnostic
- https://geopm.github.io/
- W.I.P. deployments: Theta (Argonne), Cori (NERSC), Trinity (LANL/Sandia), Quartz (LLNL), SuperMUC-NG (LRZ)