
Eni Green Datacenter – Multi-source cooling

Luca Bortot

Dampers and valves

2

Exhaust

Inlet

Recirculation

Water valve (heat exchangers)

Mode: recirculation

3

Mode: total free-cooling

4

Mode: partial free-cooling

5

Only one control variable, please

We need to reduce 3 dampers + 1 valve
to a single controlled variable

Our PID controller has one input (process) variable and one
output (control) variable only

The process variable is the data room temperature

Degrees of freedom reduction

Exhaust = Inlet

Recirculation = 100 - Inlet

All dampers = 𝒇𝒇(Inlet) = 𝒇𝒇(Air)

Recirculation control

PID control

0 100%

100%

Water

Air

Total free-cooling control

PID control

0 100%

100%

Water

Air

Partial free-cooling control

PID control

0 100%

100%

Water

Air

Chaining total + partial free-cooling

PID control

Water

0 100%

100%

Air

We have reduced the operating modes to recirculation and free-cooling

Air, Water = 𝒇𝒇(PID, Mode)

Reasons for changing between free-cooling and recirculation

• Energy saving: outside enthalpy is higher than data room’s, then
recirculation gets cheaper than free-cooling

• Humidity control: don’t want to install expensive
humidifiers/dehumidifiers, thus in the (rare) cases when humidity would go
outside the allowed range the automation switches to recirculation and
keeps humidity constant in the data room

• Anti-icing: as a last resort, when heating cables are ineffective to keep
outside pipes above 3C, switching to recirculation injects heat in the
condenser circuit by energizing the chillers

• Emergency closure for environmental hazards

A mode change has to be expected anytime

The major problem: mode change

PID control

Water

0 100%

100%

Air

PID control0 100%

100%

Water

Air

Free-cooling

Recirculation

?

The major problem: mode change

• Air and water effectiveness vary depending on outside weather, water
temperature, heat exchangers wearing, pipes insulation...

• It is nearly impossible to define an analytical, reversible function that maps Air to
Water so that Air = 𝒇𝒇(Water) and Water = 𝒇𝒇-1(Air) (maybe with ML, but good luck
gathering enough training data and then there’s still the problem of wearing)

• To change mode it is often required to move some dampers from full-open to full-
closed (and vice-versa); this takes 2 minutes and in that time period the room is
basically out of control

If you mis-evaluate the correct equivalent configuration for mode change, you get a
strong oscillation in temperature control

The minor problem: responsiveness

• By chaining air and water, in case we need to quickly move the control across its
range, we’re limited by dampers + valve speeds (2 minutes each)

• This is a problem only in the most demanding (but still possible) scenario:
• Outside air is heating up (or setpoint has been lowered)
• Air is no longer effective
• There’s a sudden load increase

The automation needs to fully open air prior to opening water: that’s around 3
minutes to get an effective cooling, which may be too much to maintain a

reasonable temperature control

May 30, 2013 5:36AM

The new paradigm

1. From the automation point of view there is no «mode», but simply a
target temperature, a primary (P) cooling source and a secondary (S)
one

2. Water and Air map to P and S depending on which one is «preferred»
at any given time (following the aforementioned cases for picking
recirculation over free-cooling)

3. The automation links P and S depending on the differential PID
output: if > 0 (more cooling required), increments P by 2/3 and S by
1/3, otherwise (less cooling required) decrements P by 1/3 and S by
2/3

4. Apply a «sticky» effect when control is on a boundary
5. Force unbalance of P and S if not on a boundary

Main control

0 100%

100%

W
at

er

Air

PID=100%

PID=0%

∆C > 0

∆C < 0

Air preference
(P=Air, S=Water)

0 100%

100%

W
at

er

Air

PID=100%

PID=0%

∆C > 0

∆C < 0

Water preference
(P=Water, S=Air)

Control loop oscillations result in the system moving towards the preferred source

Mapping old «modes»

0 100%

100%

W
at

er

Air

Recirculation

Total free-cooling

Partial free-cooling

Mode change

?

Borders stickyness

0 100%

100%

Pr
im

ar
y

Secondary

∆C > 0

∆C < 0

|∆C| < Thrsticky

0 100%

100%

|∆C| < Thrsticky

Pr
im

ar
y

Secondary

∆C > 0

∆C < 0

Automation «prefers» moving along borders to exploit the preferred cooling source,
but in case of strong demand (ie: sudden load change) it may change both sources at once

Forced unbalancing

0 100%

100%
Pr

im
ar

y

Secondary

• Given any system status (load, devices
configuration), there are infinte shares of P
and S that can provide the required cooling

• Although the automation moves preferably
towards the primary source usage, nothing
guarantees that the balance is eventually
reached using the most desirable share of
P and S

• While the PID is in neutral zone and S > 0
and P < 100, force P += Uq, S -= Uq (where
Uq = unbalancing quantum)

• This pushes the control towards the
preferred border configuration

• «Mode change» means «walking» the path
of equivalent shares from one border to
the other

+ Uq

- Uq

Equivalent shares of P and S, aka
mode change path

The automation is always in continuous, smooth control,

without any explicit mode change,

while preference changes may happen anytime

From recirculation to total free-cooling example

Mode change completed in
20 minutes

Maximum error: 0.5C

Plenum temperature

Setpoint

Water valve

Air dampers

Sticky border clamp

Mode change

Preference change
+

Unbalance kick

Water

Air

Reinterpreting modes

• Looking at the mode mapping diagram, the top border looks like a new «mode»
• What is it? Its symmetric border, the «partial free-cooling», is a configuration to be expected

whenever the outside air is unfit, but water is supposed to be always «fit». Unless...
• Should the chilled water provisioning system fail, the best strategy would be to use air! It is

better to open and get 35C than stay closed and let the data room temperature raise
undefinitely

• We could then consider that air is the backup of water. And, conversely, that water is the
backup of air

• The «partial free-cooling» is therefore the result of water backing air when air would be
preferred but is «broken»

The present algorithm seamlessly implements water-as-air-backup
and air-as-water-backup principles

(and yes, it already happened that air-as-water-backup was required!)

Cooling control flowchart

free-coolingrecirculation

Y

N

YN

YN

ℇc control error (degrees from
setpoint)

∆C differential PID output
PIDt PID output at current

timestep
PIDt-1 PID output at previous

timestep
P primary cooling source
S secondary cooling source
Thrsticky stickyness threshold
Thru unbalancing threshold
Uq unbalancing quantum

Apply preference

Main control

Stickyness

Unbalancing

P = Water
S = Air

preference

P = Air
S = Water

∆C = PIDt - PIDt-1

P += Uq
S -= Uq

S == 0 && |∆C| < Thrsticky

P += ∆C

∆C > 0

P += 2/3 |∆C|
S += 1/3 |∆C|

P -= 1/3 |∆C|
S -= 2/3 |∆C|

ℇc< Thru && P < 100 && S > 0

	Eni Green Datacenter – Multi-source cooling
	Dampers and valves
	Mode: recirculation
	Mode: total free-cooling
	Mode: partial free-cooling
	Only one control variable, please
	Degrees of freedom reduction
	Recirculation control
	Total free-cooling control
	Partial free-cooling control
	Chaining total + partial free-cooling
	Reasons for changing between free-cooling and recirculation
	The major problem: mode change
	The major problem: mode change
	The minor problem: responsiveness
	May 30, 2013 5:36AM
	The new paradigm
	Main control
	Mapping old «modes»
	Borders stickyness
	Forced unbalancing
	Slide Number 22
	From recirculation to total free-cooling example
	Reinterpreting modes
	Cooling control flowchart

