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Mode: recirculation
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Mode: total free-cooling
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Mode: partial free-cooling
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Only one control variable, please

We need to reduce 3 dampers + 1 valve 
to a single controlled variable

Our PID controller has one input (process) variable and one 
output (control) variable only

The process variable is the data room temperature



Degrees of freedom reduction

Exhaust = Inlet

Recirculation = 100 - Inlet

All dampers = 𝒇𝒇(Inlet) = 𝒇𝒇(Air)



Recirculation control
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Total free-cooling control
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Partial free-cooling control
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Chaining total + partial free-cooling
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We have reduced the operating modes to recirculation and free-cooling

Air, Water = 𝒇𝒇(PID, Mode)



Reasons for changing between free-cooling and recirculation

• Energy saving: outside enthalpy is higher than data room’s, then 
recirculation gets cheaper than free-cooling

• Humidity control: don’t want to install expensive 
humidifiers/dehumidifiers, thus in the (rare) cases when humidity would go 
outside the allowed range the automation switches to recirculation and 
keeps humidity constant in the data room

• Anti-icing: as a last resort, when heating cables are ineffective to keep 
outside pipes above 3C, switching to recirculation injects heat in the 
condenser circuit by energizing the chillers

• Emergency closure for environmental hazards

A mode change has to be expected anytime



The major problem: mode change
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The major problem: mode change

• Air and water effectiveness vary depending on outside weather, water 
temperature, heat exchangers wearing, pipes insulation...

• It is nearly impossible to define an analytical, reversible function that maps Air to 
Water so that Air = 𝒇𝒇(Water) and Water = 𝒇𝒇-1(Air) (maybe with ML, but good luck 
gathering enough training data and then there’s still the problem of wearing)

• To change mode it is often required to move some dampers from full-open to full-
closed (and vice-versa); this takes 2 minutes and in that time period the room is 
basically out of control

If you mis-evaluate the correct equivalent configuration for mode change, you get a 
strong oscillation in temperature control



The minor problem: responsiveness

• By chaining air and water, in case we need to quickly move the control across its 
range, we’re limited by dampers + valve speeds (2 minutes each)

• This is a problem only in the most demanding (but still possible) scenario:
• Outside air is heating up (or setpoint has been lowered)
• Air is no longer effective
• There’s a sudden load increase

The automation needs to fully open air prior to opening water: that’s around 3 
minutes to get an effective cooling, which may be too much to maintain a 

reasonable temperature control
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The new paradigm

1. From the automation point of view there is no «mode», but simply a 
target temperature, a primary (P) cooling source and a secondary (S) 
one

2. Water and Air map to P and S depending on which one is «preferred» 
at any given time (following the aforementioned cases for picking 
recirculation over free-cooling)

3. The automation links P and S depending on the differential PID 
output: if > 0 (more cooling required), increments P by 2/3 and S by 
1/3, otherwise (less cooling required) decrements P by 1/3 and S by 
2/3

4. Apply a «sticky» effect when control is on a boundary
5. Force unbalance of P and S if not on a boundary



Main control
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Control loop oscillations result in the system moving towards the preferred source



Mapping old «modes»
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Borders stickyness
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Automation «prefers» moving along borders to exploit the preferred cooling source,
but in case of strong demand (ie: sudden load change) it may change both sources at once



Forced unbalancing
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• Given any system status (load, devices 
configuration), there are infinte shares of P 
and S that can provide the required cooling

• Although the automation moves preferably 
towards the primary source usage, nothing 
guarantees that the balance is eventually 
reached using the most desirable share of 
P and S

• While the PID is in neutral zone and S > 0 
and P < 100, force P += Uq, S -= Uq (where 
Uq = unbalancing quantum)

• This pushes the control towards the 
preferred border configuration

• «Mode change» means «walking» the path 
of equivalent shares from one border to 
the other

+ Uq

- Uq

Equivalent shares of P and S, aka
mode change path



The automation is always in continuous, smooth control,

without any explicit mode change,

while preference changes may happen anytime



From recirculation to total free-cooling example

Mode change completed in 
20 minutes
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Reinterpreting modes

• Looking at the mode mapping diagram, the top border looks like a new «mode»
• What is it? Its symmetric border, the «partial free-cooling», is a configuration to be expected 

whenever  the outside air is unfit, but water is supposed to be always «fit». Unless...
• Should the chilled water provisioning system fail, the best strategy would be to use air! It is 

better to open and get 35C than stay closed and let the data room temperature raise 
undefinitely

• We could then consider that air is the backup of water. And, conversely, that water is the 
backup of air

• The «partial free-cooling» is therefore the result of water backing air when air would be 
preferred but is «broken»

The present algorithm seamlessly implements water-as-air-backup 
and air-as-water-backup principles

(and yes, it already happened that air-as-water-backup was required!)



Cooling control flowchart
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PIDt PID output at current 
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P = Water
S = Air

preference

P = Air
S = Water

∆C = PIDt - PIDt-1

P += Uq
S -= Uq

S == 0 && |∆C| < Thrsticky

P += ∆C

∆C > 0

P += 2/3 |∆C|
S += 1/3 |∆C|
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ℇc< Thru && P < 100 && S > 0
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