
The Analysis of Impact of Energy
Efficiency Requirements on
Programming Environments

John Shalf
Department Head for Computer Science

NERSC CTO
Lawrence Berkeley National Laboratory

SC12 Workshop on Energy Efficient HPC
Nov 11, 2012

2

• Programming Models are a Reflection of the Underlying
Machine Architecture
– Express what is important for performance
– Hide complexity that is not consequential to performance

• Programming Models are Increasingly Mismatched with
Underlying Hardware Architecture
– Changes in computer architecture trends/costs
– Performance and programmability consequences

• The reason for the mismatch is the increasingly power
constrained nature of future machine architectures
– Peter Kogge described how data movement is biggest cost factor
– Programming environments and algorithm design is rapidly moving

from conserving FLOPs to conserving data movement

• Recommendations on Reformulating Programming
Environment together with Hardware Support for Efficiency
– One school of thought says we try to control energy states of HPC
– Alternative is to design to maximize data movement efficiency

Outline

3

• Minimize the number of lines of code I have to change
when we move to next version of a machine
– Evidence that current abstractions are broken are entirely related

to effort required to move to each new machine
– Target is the FIRST DERIVATIVE of technology changes!!!

• What is changing the fastest (what do we want to make
future pmodels less sensitive to)
– Insensitive to # cores (but unclear if as worried about # of nodes)
– Less sensitive to sources of of non‐uniformity (execution rates and

heterogeneous core types)
– Memory capacity/compute ratio (strong’ish’ ‐ scaling)
– Data Movement Constraints

• Increasingly distance‐dependent cost of data movement
• Topological constraints (node‐scale & system‐wide)
• Expressed as NUMA domains (within node)

What are durable abstractions (abstract machine model) for
HIDING or MITIGATING these design trends?

Goal for Programmers at All Levels
(NNSA Exascale Roadmapping Workshop in SF, 2011)

4

What is an Abstract Machine Model?
Definition: An Abstract Machine model represents the

machine attributes that will be important to
reasoning about code performance

• Enables us to reason about how to map algorithm
efficiently onto underlying machine architecture

• Enables us to reason about power/performance trade-offs
for different algorithm or execution model choices

• Want model to be as simple as possible, but not neglect
any aspects of the machine that are important for
performance Has been relatively consistent in HPC for many years

Pax MPI

5

The Programming Model is a Reflection of the
Underlying Abstract Machine Model

• Equal cost SMP/PRAM model
– No notion of non-local access
– int [nx][ny][nz];

• Cluster: Distributed memory model
– No unified memory
– int [localNX][localNY][localNZ];

• PGAS for horizontal locality
– Data is LOCAL or REMOTE
– shared [Horizontal] int [nx][ny][nz];

• HPGAS for vertical data movement
– Depth of hierarchy also matters now
– shared [Vertical][Horizontal] int

[x][y][z];?

5

SMP

P P P P P

P P P P P

MPI Distributed Memory

local

P P P P P

shared
PGAS

local

P P P P P

Chip
shared HPGAS????
shared

6

Parameterized Machine Model
(what do we need to reason about when designing a new code?)

Cores
•How Many
•Heterogeneous
•SIMD Width

Network on Chip (NoC)
•Are they equidistant or
•Constrained Topology (2D)

On‐Chip Memory Hierarchy
•Automatic or Scratchpad?
•Memory coherency method?

Node Topology
•NUMA or Flat?
•Topology may be important
•Or perhaps just distance

Memory
•Nonvolatile / multi‐tiered?
•Intelligence in memory (or not)

Fault Model for Node
• FIT rates, Kinds of faults
• Granularity of faults/recovery

Interconnect
•Bandwidth/Latency/Overhead
•Topology

Primitives for data movement/sync
•Global Address Space or messaging?
•Synchronization primitives/Fences

7

For each parameterized machine attribute, can
• Ignore it: If ignoring it has no serious power/performance consequences
• Abstract it (virtualize): If it is well enough understood to support an automated

mechanism to optimize layout or schedule
• This makes programmers life easier (one less thing to worry about)

• Expose it (unvirtualize): If there is not a clear automated way of make decisions
• Must involve the human/programmer in the process (make pmodel more expressive)
• Directives to control data movement or layout (for example)

Want model to be as simple as possible, but not neglect any
aspects of the machine that are important for performance

Parameterized Machine Model
(what do we need to reason about when designing a new code?)

Data Movement

8

9

The problem with Wires:
Energy to move data proportional to distance

• Cost to move a bit on copper wire:
– Power = bitrate * Length / cross-section-area

• Wire data capacity constant as feature size shrinks
• Cost to move bit proportional to distance
• ~1-5TByte/sec max feasible off-chip BW (10-20GHz/pin)
• Photonics is a wildcard

Copper requires to signal amplification
even for on‐chip connections

Photonics requires no redrive
and passive switch little power

10

Data Movement Costs

1

10

100

1000

10000

Pi
co
Jo
ul
es

now

2018

Energy Efficiency will require careful management of data locality

Important to know when you are on‐chip and when data is off‐chip!

11

Future of On-Chip Architecture
(Nov 2009 DOE arch workshop)

• ~1000-10k simple cores
• 4-8 wide SIMD or VLIW bundles
• Either 4 or 50+ HW threads
• On-chip communication Fabric

– Low-degree topology for on-chip
communication (torus or mesh)

– Can we scale cache-coherence?
– HW msg. passing
– Global (possibly nonCC memory)
– Shared register file (clusters)

• Off-chip communication fabric
– Integrated directly on an SoC
– Reduced component counts
– Coherent with TLB (no pinning)Scale‐out for Planar geometry

12

Cost of Data Movement

• Cost of moving long-distances on
chip motivates clustering on-chip
– 1mm costs ~6pj (today & 2018)
– 20mm costs ~120 pj (today & 2018)
– FLOP costs ~100pj today
– FLOP costs ~25pj in 2018

• Different Architectural Directions
– GPU: WARPs of hardware threads

clustered around shared register file
– CMP: limited area cache-coherence
– CMT: hardware multithreading

clusters

Data Locality Management
Vertical Locality Management

(spatio-temporal optimization)
Horizontal Locality Management

(topology optimization)

13

14

• Old Mental Model -- Reduce FLOPs
– FLOPS used to be the most expensive (conserve what is expensive)
– Concern about sustained-to-peak performance (% of peak flop rate)

• Technology Trends (are mismatched with current pmodel)
– Cost of data movement rising faster than cost of a flop. (IKEA FLOPs)
– New costs center around vertical and horizontal data movement

• New Approaches need CoDesign of Hardware/Software
mechanisms for a complete programming environment
– Communication Avoiding Algorithms and Average

Communication Distance Model
– More expressive type-systems to express data layouts

• Enables compilers and runtimes info to reason about data layout
– Functional Semantics to simplify automated data movement

• Make data volume and movement trivial to identify and compute
• Make tedious CUDA_copy and ACC data movement directives go away

Shifting our Programming Paradigm to Reflect
Emerging Design Constraints

Data Locality Management
Vertical Locality Management

(spatio-temporal optimization)
Horizontal Locality Management

(topology optimization)

15

Hardware/Software for Managing
Vertical Data Locality

1

10

100

1000

10000

DP
 FL

OP

Re
gis

ter

1m
m on

‐ch
ip

5m
m on

‐ch
ip

Of
f‐c

hip
/D

RA
M

loc

al
int

erc
on

ne
ct

Cr
os

s s
yst

em

Pi
co
Jo
ul
es

now

2018

Off ChipOff Chip

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 0.2 0.5 1 2

M
em

or
y
Po

w
er
 C
on

su
m
pt
io
n
in
 M

eg
aw

at
ts
 (M

W
)

Bytes/FLOP ratio (# bytes per peak FLOP)

Stacked JEDEC 30pj/bit 2018 ($20M)

Advanced 7pj/bit Memory ($100M)

Enhanced 4pj/bit Advanced Memory ($150M
cumulative)

Feasible Power Envelope (20MW)

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 0.2 0.5 1 2

M
em

or
y

Po
w

er
 C

on
su

m
pt

io
n

in
 M

eg
aw

at
ts

 (M
W

)

Bytes/FLOP ratio (# bytes per peak FLOP)

Stacked JEDEC 30pj/bit 2018 ($20M)

Advanced 7pj/bit Memory ($100M)

Enhanced 4pj/bit Advanced Memory
($150M cumulative)
Feasible Power Envelope (20MW)

Memory that
exceeds 20MW
is not practical
design point.

Application performance and
breadth pushes us to higher
BW

Power pushes us to lower
bandwidth

Memory Technology
Investment enables

improvement in bandwidth
(and hence improves
application breadth)

Memory Bandwidth

18

Loop Fusion To Reduce Memory Bandwidth
“use cache as bandwidth filter”

Baseline
2.9 GB/sweep
1.78 Bytes/Flop

Simple Fusion
1.6 GB/sweep (–46%)

0.96 Bytes/Flop

Aggressive
Fusion

0.48 GB/sweep (–84%)
0.29 Bytes/Flop

18

Note: This is not traditional fusion.
Current compilers models are not
up to this task.

But how much is it worth to fix
them?

19

0.25

0.5

1

2

4

8

16

2 8 32 128 512 2048

M
em

or
y
Tr
af
fic

 (G
B)

Cache Size (kB)

Memory Traffic vs Cache Size for Loop Fusion Scenarios
("best" block size)

Baseline

Simple

Aggressive

Baseline (no cache)

Fused (no cache)

Codesign Question:
How Much Cache Should I have?

19

0.25

0.5

1

2

4

8

16

2 8 32 128 512 2048

M
em

or
y
Tr
af
fic

 (G
B)

Cache Size (kB)

Memory Traffic vs Cache Size for Loop Fusion Scenarios
("best" block size)

Baseline

Simple

Aggressive

Baseline (no cache)

Fused (no cache)

"Best" Strategy

Select “best” strategy
for each cache size

More Cache reduces memory bandwidth requirements
But consumes surface area, so need to give up some processor cores or other services

20

0

10

20

30

40

50

60

70

Baseline Simple Fusion

Integer/Address

Floating Point

Codesign Question:
How many registers should I have?

• If not enough registers available to hold state,
registers spill into the L1 cache, increasing cache
traffic and possibly affecting performance

x86 has 16 integer and
16 FP registers!

20

21

• Aggressive Fusion is essential to lower memory bandwidth
requirements
– But to get the advantage need large L1 cache (would need to be

scratchpad to be feasible)
– Also requires larger register file
– And requires new programming paradigm to enable aggressive fusion

(functional semantics or other hints to facilitate compiler analysis)
• Benchmarking on current architectures would have missed this

opportunity
– Requires predictive modeling and architectural simulation
– This is the center of codesign

• Many of the most valuable hardware opportunities identified by
codesign will have major impact on our programming
paradigm!
– Its not just about transforming code and algorithms
– Choices affect our entire paradigm for programming these systems!
– Must think deeper about ramifications to programming ecosystem (just

as we did in the transition from vec to MPI)

Conclusions on Vertical Locality Management

Software/Hardware Mechanisms for
Managing Horizontal Data Locality

1

10

100

1000

10000

DP
 FL

OP

Re
gis

ter

1m
m on

‐ch
ip

5m
m on

‐ch
ip

Of
f‐c

hip
/D

RA
M

loc

al
int

erc
on

ne
ct

Cr
os

s s
yst

em

Pi
co
Jo
ul
es

now

2018

FLOPs cost more than on‐
chip data movement!

(NUMA)

23

Problems with Existing Abstractions for
Expressing Locality

• Our current programming models assume all
communicating elements are equidistant (PRAM)
– OpenMP, and MPI each assume flat machine at their level of parallelism

• But the machine is not flat!!!
– Lose performance because expectation

and reality are mismatched
– Pmodel does not match

underlying machine model!!

• What is wrong with Flat MPI?
– 10x higher bandwidth between cores on chip
– 10x lower latency between cores on chip
– If you pretend that every core is a peer (each is just a generic MPI rank)

you are leaving a lot of performance on the table
– You cannot domain-decompose things forever

1

10

100

1000

10000

DP
 FL

OP

Re
gis

ter

1m
m on

‐ch
ip

5m
m on

‐ch
ip

Of
f‐c

hip
/D

RA
M

loc

al
int

erc
on

ne
ct

Cr
os

s s
yst

em

Pi
co
Jo
ul
es

now

2018

24

Comm Perf of 3D FFT on Franklin

0

10

20

30

40

50

60

128 256 512 1024 2048 4096

32 64 128 256 512 1024

No of Nodes and Cores

P
e
rc

e
n
ta

g
e
 o

f
C
o
m

m

Comm MPI
Comm MPI + OpenMP

Current Practices (MPI+X)
• MPI+OMP Hybrid recognizes huge

cost for going off-chip
• Hybrid Model improves 3D FFT

communication performance
– Enables node to send larger

messages between nodes
– Substantial improvements in

communications efficiency

Good News!

Benefits of expressing
Two‐levels of locality

0

2

4

6

8

10

12

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 6 12

768 384 256 128 64

M
em

or
y

/ G
B

 p
er

 n
od

e

Ti
m

e
/ s

OpenMP threads / MPI tasks

"DGEMM" FFT

G
O
O
D

Requires user
training to

mitigate NUMA
performance

issues.

• But OMP offers no
management of data locality
– Huge performance penalty for ignoring

NUMA effects
– Then programmer responsible for

matching up computation with data
layout!! (UGH!)

– Makes library writing difficult and Makes
AMR nearly impossible!

Bad News!
It’s the Revenge of
the SGI Origin2000

25

Expressing Hierarchical Layout
• Hierarchical layout statements

– Express mapping of “natural” enumeration of an array to the
unnatural system memory hierarchy

– Maintain unified “global” index space for arrays (A[x][y][z])
– Support mapping to complex address spaces
– Convenient for programmers

• Iteration expressions more powerful when they
bind to data locality instead of threadnumber
– instead of upc_forall(;;;<threadnumber>)
– Use upc_forall(;;;<implicitly where Array A is local>)

upc_forall(i=0;i<NX;i++;A)

C[j]+=A[j]*B[i][j]);

25

26

Hierarchical Layout Statements
• Building up a hierarchical layout

– Layout block coreblk {blockx,blocky};
– Layout block nodeblk {nnx,nny,nnz};
– Layout hierarchy myheirarchy {coreblk,nodeblk};
– Shared myhierarchy double a[nx][ny][nz];

26

• Then use data‐localized parallel loop
doall_at(i=0;i<nx;i++;a){

doall_at(j=0;j<ny;j++;a){
doall_at(k=0;k<nz;k++;a){

a[i][j][k]=C*a[i+1]…>
• And if layout changes, this loop remains the same

Satisfies the request of the application developers
(minimize the amount of code that changes)

27

Conclusions on Data Layout
• Failure to express data locality has substantial cost in

application performance
– Compiler and runtime cannot figure this out on its own given limited

information current languages and programming models provide

• Hierarchical data layout statements offer better
expressiveness
– Must be hierarchical
– Must be multidimensional
– Support composable build-up of layout description

• Data-centric parallel expressions offer better
virtualization of # processors/threads
– Don’t execute based on “thread number”
– Parallelize & execute based on data locality
– Enables layout to be specified in machine-dependent manner

without changing execution

27

Interconnects

Technology Trends and Effects on
Application Performance

28

29

Scalable Interconnects

• Can’t afford to continue with
Fat-trees or other Fully-
Connected Networks (FCNs)

• But will Ultrascale applications
perform well on lower degree
networks like meshes,
hypercubes or torii. Or high-
radix routers/tapered dragonfly?

• How can we wire up a custom
interconnect topology for each
application?

Total # of Processors in Top15

0

50000

100000

150000

200000

250000

300000

350000

Ju
n-

93

D
ec

-9
3

Ju
n-

94

D
ec

-9
4

Ju
n-

95

D
ec

-9
5

Ju
n-

96

D
ec

-9
6

Ju
n-

97

D
ec

-9
7

Ju
n-

98

D
ec

-9
8

Ju
n-

99

D
ec

-9
9

Ju
n-

00

D
ec

-0
0

Ju
n-

01

D
ec

-0
1

Ju
n-

02

D
ec

-0
2

Ju
n-

03

D
ec

-0
3

Ju
n-

04

D
ec

-0
4

Ju
n-

05

D
ec

-0
5

Ju
n-

06

List

P
ro

ce
ss

o
rs

30 30

Interconnect Design Considerations
for Message Passing Applications

• Application studies provide insight to
requirements for Interconnects (both
on‐chip and off‐chip)
– On‐chip interconnect is 2D planar

(crossbar won’t scale!)
– Sparse connectivity for most apps.;

crossbar is overkill
– No single best topology
– Most point‐to‐point message exhibit

sparse topology + often bandwidth
bound

– Collectives tiny and primarily latency
bound

• Ultimately, need to be aware of the on‐
chip interconnect topology in addition
to the off‐chip topology
– Adaptive topology interconnects (HFAST)
– Intelligent task migration?

31 31

Interconnect Design Considerations
for Message Passing Applications

• Application studies provide insight to
requirements for Interconnects (both
on‐chip and off‐chip)
– On‐chip interconnect is 2D planar

(crossbar won’t scale!)
– Sparse connectivity for most apps.;

crossbar is overkill
– No single best topology
– Most point‐to‐point message exhibit

sparse topology + often bandwidth
bound

– Collectives tiny and primarily latency
bound

• Ultimately, need to be aware of the on‐
chip interconnect topology in addition
to the off‐chip topology
– Adaptive topology interconnects (HFAST)
– Intelligent task migration?

Opportunity

32

CCSM Performance Variability
(trials of embedding communication topologies)

• Result of 311 runs of the coupled climate model showing model
throughput as a function of completion date.

Data from Harvey Wasserman

COV ~9%

33

Node placement of a fast, average and slow run

Fast run: 940 seconds Slow run: 2462 secondsAverage run: 1100 seconds

Y=8

X=17

Z=24

from Katie Antypas

34

Node placement of a fast, average and slow run

Fast run: 940 seconds Slow run: 2462 secondsAverage run: 1100 seconds

Y=8

X=17

Z=24

from Katie Antypas

Failure to exploit
opportunity

(when virtualization of
topology goes wrong)

35

Topology Optimization
(turning Fat-trees into Fit-trees)

• A Fit-tree uses OCS to
prune unused (or
infrequently used)
connections in a Fat-Tree

• Tailor the interconnect
bandwidth taper to match
application data flows

35
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12
Fat-tree level

%
 B

an
d
w

id
th

 U
ti

liz
at

io
n

BB3D (P=512)

Cactus (P=1024)
GTC (P=8192)

LBCFD (P=1024)

Mbench (P=256)

PARATEC (P=256)

PMEMD (P=256)

SuperLU (P=256)

36

• Huge opportunity for communication topology
optimization to improve performance
– Runtime information gathering for active task migration, circuit

switching
– Use intelligent runtime to remap for locality or to use circuit

switching to optimize switch topology

• Current Programming Models do not provide facility
to express topology
– OpenMP topology un-aware
– MPI has topology directives (tedious, and rarely implemented or

used)
– Results in substantial measurable losses in performance

(within node/OpenMP and inter-node/MPI)

Need to provide the compiler, runtime & resource
manager more information about topology

Conclusions on Interconnect

Heterogeneity / Inhomogeneity
async pmodels?

38

Assumptions of Uniformity is Breaking
(many new sources of heterogeneity)

• Heterogeneous compute engines (hybrid/GPU computing)
• Irregular algorithms
• Fine grained power mgmt. makes homogeneous cores look

heterogeneous
– thermal throttling on Sandybridge – no longer guarantee deterministic clock rate

• Nonuniformities in process technology creates non-uniform
operating characteristics for cores on a CMP

• Fault resilience introduces inhomogeneity in execution rates
– error correction is not instantaneous
– And this will get WAY worse if we move towards software-based resilience

39

• Sources of performance heterogeneity increasing
(especially as we try to extract more energy efficiency)
– Heterogeneous architectures (accelerator)
– Thermal throttling
– Near Threshold: increased heterogeneity for clock rates
– Performance heterogeneity due to transient error recovery

• Current Bulk Synchronous Model not up to task
– Current focus is on removing sources of performance variation

(jitter), is increasingly impractical
– Huge costs in power/complexity/performance to extend the life of a

purely bulk synchronous model

Embrace performance heterogeneity: Study use of
asynchronous computational models (e.g.
SWARM, HPX, and other concepts from 1980s)

Conclusions on Heterogeneity

Why Wait for Exascale
everything is breaking NOW!

41

• Emerging hardware constraints are increasingly mismatched
with our current programming paradigm

– Current emphasis is on preserving FLOPs
– The real costs now are not FLOPs… it is data movement
– Requires shift to a data-locality centric programming paradigm and hardware

features to support it

• Codesign is NOT just design optimization
– The programming environment and associated “abstract machine

model” is a reflection of the underlying machine architecture
– Therefore, design decisions can have deep effect your entire

programming paradigm
– Hardware/Software Codesign MUST consider ergonomic decisions

about your programming environment together with performance
• Performance Portability Should be Top-Tier Metric for

CoDesign process
– Know what to IGNORE, what to ABSTRACT, and what to make more

EXPRESSIVE

Conclusions

42

Programming model IS, and SHOULD BE a proper
reflection of the underlying machine architecture

Machine attributes are parameterized
–Changes with each generation of machine and between different vendor
implementations
–Pmodel should target the parameterized attributes

For each parameterized machine attribute
• Ignore it: If ignoring it has no serious power/performance

consequences
• Abstract it (virtualize): If it is well enough understood to support an

automated mechanism to optimize layout or schedule
• Expose it (unvirtualize): If there is not a clear automated way of

make decisions

Remember the Abstract
Machine Model

43

• Data layout (currently, make it more expressive)
– Need to support hierarchical data layout that closer matches architecture
– Automated method to select optimal layout is elusive, but type-system can

support minimally invasive user selection of layout
• Horizontal locality management (virtualize)

– Flexibly use message queues and global address space
– Give intelligent runtime tools to dynamically compute cost of data movement

• Vertical data locality management (make more expressive)
– Need good abstraction for software managed memory
– Malleable memories (allow us to sit on fence while awaiting good abstraction)

• Heterogeneity (virtualize)
– Its going to be there whether you want it or not
– Pushes us towards async model for computation (post-SPMD)

• Parallelism (virtualize)
– Need abstraction to virtualize # processors (but must be cognizant of layout)
– For synchronous model (or sections of code) locality-aware iterators or

loops enable implicit binding of work to local data.
– For async codes, need to go to functional model to get implicit parallelism

• Helps with scheduling
• Does not solve data layout problem

Recommendations

